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Foreword 

 

Emerging applications such as Web-based communities, wikis, social networks, mashups and folksonomies go 
beyond information access and dissemination to enhance creativity, information sharing, and collaboration among 
users providing richer interaction possibilities. Now, users cannot only access content but they can also generate, share 
and modify content (both theirs and others’) freely, compose their applications, enhance their interface, etc. Different 
notions of user information, such as preferences, community memberships and social interactions, and context 
information, such as a user’s social network, location, time, and other features of a user’s environment, are now of 
paramount importance in improving and personalizing user experience. The purpose of the PersDB workshop is to 
bring together database and information retrieval researchers and practitioners in order to study the new data 
management challenges which must take into account personal, social and contextual information about users.  

 

We have received 18 papers spanning different topics including context-driven databases, recommendations, search 
and social networks. We accepted 6 papers, having a healthy acceptance rate of about 33%. We are grateful to all the 
authors who submitted papers and those who are attending the workshop.  

 

We would also like to thank Laks Lakshmanan for accepting to be the keynote speaker, our panelists and our 
reviewers who did their best in delivering thorough reviews on time. Last but not least, we would like to thank Julia 
Stoyanovich for maintaining the workshop web site. 
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Recommender Systems Revisited: from Items to Transactions  (Invited Talk) 

Laks V.S. Lakshmanan (University of British Columbia, Canada)   

Abstract: Recommender systems have been extremely successful in reaching relevant content to users. Rather than 
rely on a static notion of content relevance to a user's query or a profile, they incorporate endorsements of items by 
other users and/or ratings provided by the same user on other items considered similar. In this talk, I will make a case 
for developing recommendation strategies and systems not just for recommending content items but for users 
performing transactions. Consider a social network where users register items (e.g., toaster, lawn mower) they are 
willing to give away to other users in exchange for items in their wish list which they have registered with the system. 
The idea is users either swap items or more generally exchange items in cycles. I will discuss the algorithmic 
challenges in developing strategies for recommending exchange transactions to users and present approximation as 
well as heuristic algorithms we have developed for solving this problem. I will also discuss the results of a detailed set 
of experiments we ran to gauge the performance of the various algorithms and conclude with interesting directions for 
future work. 

  



How Far Should We Personalize? (Panel) 

Sihem Amer-Yahia (Y! Labs, USA) Yannis Ioannidis (University of Athens, Greece), Christian Jensen (Aalborg 
University, Denmark), Evi Pitoura (University of Ioannina, Greece), Elisa Quintarelli (Politecnico di Milano, Italy) 

Abstract: Given the proliferation of data and applications, different possibilities as well as different requirements for 
personalizing user experience emerge at various levels (e.g., content, UI, services, etc). For instance, people may like 
different services on their cell phone or in Facebook. They may be interested in different content depending on their 
location, task, preferences or group they belong to. Different presentation features serve different people better. For 
example, some users like lengthy explanations, others may want to see reviews. Endless personalization possibilities 
seem to exist in different applications, from personalized search and ads to personal mashups. 

At the same time, there are several arguments against (over-) personalization. For example, if we do not have correct 
information about a user, personalization may hurt accuracy. In addition to gathering and maintaining a profile, on-
the-fly personalization can be expensive. Over-personalization may lead to over-specialization. Making a 
recommendation of something a user would definitely like is valuable but what about serendipity and diversity? There 
is also a delicate balance in advertising between the accuracy of ads and their total irrelevance. From the publishers 
point of view, they would rather serve relevant content than not, from the users' perspective, more relevant ads may be 
annoying (e.g., a user announces the birth of a child in an email to friends, ads start suggesting where to buy baby 
stuff).  With all these in mind, the panel's objective is to discuss when, what, how, and to what extent we should or 
should not personalize. 
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ABSTRACT 
Content management tools like Microsoft’s SharePoint allow 
users of an application domain to share documents and tag them 
in an ad-hoc way. Similarly, Google Base allows users to define 
attributes for their objects or choose from predefined templates. 
This ad-hoc or predefined annotation of the shared data incurs 
problems like schema explosion or inadequate data annotation, 
which in turn lead to poor search and analysis capabilities.  

We propose CADS, a Collaborative Adaptive Data Sharing 
platform, where the information demand of the community–e.g., 
query workload–is exploited to annotate the data at insertion-time. 
A key novelty of CADS is that it learns with time the most 
important data attributes of the application, and uses this 
knowledge to guide the data insertion and querying. In this 
position paper, we present the challenges and preliminary design 
ideas for building a CADS platform. We use the application of 
CADS on the Business Continuity Information Network (BCIN) 
of South Florida as a motivating example. 

1. INTRODUCTION 
There are many application domains where a community of users 
collaborate and share domain-specific information; for instance, 
news blogs, scientific networks, social networking groups, or 
disaster management networks. Current information sharing tools, 
like content management software (e.g., Microsoft’s SharePoint), 
allow users to share documents and tag them in an ad-hoc way. 
Similarly, Google Base [14] allows users to define attributes for 
their objects or choose from predefined templates. For instance, 
when a user input a weather report on a hurricane, it would be 
nice to enter 〈Storm category, 3〉 or other such information. Even 
if the system allows users to arbitrarily annotate their data with 
such pairs, the users would probably be unwilling to do it since it 
requires considerable effort (inadequate data annotation). Further, 
the system would end up having thousands of different attribute 
names (schema explosion), where many share the same real life 
meaning, e.g., “Storm category”, “Hurricane category”, “Storm 
level”. The above limitations make the analysis and querying of 
the data cumbersome. Users are mostly limited to plain keyword 
searches, with very few extra conditions like date and owner of 
document.  

A recent line of work to the right direction is the pay-as-you-go 
querying strategy in Dataspaces, where users provide data 
integration hints at query time. However, there is no work that 
achieves integration and attribute-extraction of the data at 
insertion time, since a key assumption in previous works is that 
the data sources already exist. This assumption is generally not 
valid for collaborative data sharing platforms. 

We propose CADS, a Collaborative Adaptive Data Sharing 
platform, which facilitates data annotation at insertion-time and 
leverages these annotations at query-time. CADS learns with time 
the information demand (query workload), which is then used 
create adaptive insertion and query forms.  

Some of the collaborative data sharing applications that will 
benefit from a successful CADS platform are disaster 
management, corporate context management, news portals, social 
networking, and scientific collaboration.  

Motivating scenario: Our motivating scenario is a disaster 
management situation, which was inspired by the experiences of 
the authors in building a Business Continuity Information 
Network [30] for disaster situations in South Florida. In this 
particular domain we have many users and organizations 
publishing and consuming information. For example, in a 
hurricane situation, local government agencies report shelters 
locations, damages in structures or structural warnings. 
Meteorological Agencies report the status of the hurricane, its 
position and particular warnings. Volunteers may share their 
activities and look for critical needs. Business owners may 
describe the status and needs of their stores and personnel. 

The information produced and consumed in this domain is 
dynamic and unpredictable, and agencies have their own protocols 
and formats of sharing data, e.g., the Miami-Dade County 
Emergency Office publishes hourly document reports. Further, 
learning the schema from previous disasters is hard given that new 
needs, requirements and situations arise. 

In Figure 1(a) we show a report extracted from the National 
Hurricane Center repository, which describes the status of a 
hurricane event in 2008, that is, the current storm location, wind 
speed, warnings, category, advisory identifier number and the date 
it was disclosed. Even though this is a text document, many 
〈attribute name, attribute value〉 pairs, e.g., “Storm Category = 3” 
can be extracted, which could then improve the quality of 
searching through the database. For instance, Figure 1(b) shows 
three sample queries for which the report of Figure 1(a) is a good 
answer. 

The goal of CADS is to allow the effortless sharing of documents 
like the one in Figure 1(a), while at the same time serving semi-
structured queries like the ones in Figure 1(b). 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commercial 
advantage, the VLDB copyright notice and the title of the publication and its 
date appear, and notice is given that copying is by permission of the Very 
Large Database Endowment. To copy otherwise, or to republish, to post on 
servers or to redistribute to lists, requires a fee and/or special permissions 
from the publisher, ACM. 
VLDB ’09, August 24-28, 2009, Lyon, France. 
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00. 
 
1Partly supported by NSF grant IIS-0811922 and DHS grant 
2009-ST-062-000016. 



The structure of the paper is as follows: In Section 2 we discuss 
the relationship of CADS to other research efforts. Section 3 
presents the preliminary design of CADS. The research challenges 
of CADS are presented in Section 4 and we conclude in Section 5.  

2. RELATED WORK 
Dataspaces and Pay-as-you-go Integration: The integration 
model of CADS is similar to that of dataspaces [13], where a 
loosely integration model is proposed for heterogeneous sources. 
However, the semi-automatic annotation of data with metadata at 
insertion time is new to CADS. In CADS, the integration then 
occurs on this metadata. Another related data model is that of 
Google Base [14], where users can specify their own 
attribute/value pairs, in addition to the ones proposed by the 
system. However, the proposed attributes in Google Base are 
hard-coded for each item category (e.g., real estate property). In 
CADS, the goal is to “learn” what attribute/values to suggest. Pay-
as-you go integration techniques like PayGo [25] and [22] are 
useful to suggest candidate matchings at query time. However, no 
previous work considers this problem at insertion time, as in 
CADS. The work on Peer Data Management Systems [16] is a 
precursor of the above projects. 

ZCZC MIATCPAT2 ALL 
TTAA00 KNHC DDHHMM 
BULLETIN 
HURRICANE GUSTAV INTERMEDIATE ADVISORY NUMBER 31A 
NWS TPC/NATIONAL HURRICANE CENTER MIAMI FL   AL0720 08 
600 AM CDT MON SEP 01 2008 
 
EYE OF GUSTAV NEARING THE LOUISIANA COAST...HURRICA NE FORCE WINDS 
OVER PORTIONS OF SOUTHEASTERN LOUISIANA... 
A HURRICANE WARNING REMAINS IN EFFECT FROM JUST EAST OF HIGH 
ISLAND TEXAS EASTWARD TO THE MISSISSIPPI-ALABAMA 
BORDER...INCLUDING THE CITY OF NEW ORLEANS AND LAKE  PONTCHARTRAIN. 
PREPARATIONS TO PROTECT LIFE AND PROPERTY SHOULD HAVE BEEN 
COMPLETED. 
A TROPICAL STORM WARNING REMAINS IN EFFECT FROM EAST OF THE 
MISSISSIPPI-ALABAMA BORDER TO THE OCHLOCKONEE RIVER. 
GUSTAV IS MOVING TOWARD THE NORTHWEST NEAR 16 MPH...26 KM/HR...AND 
THIS MOTION IS EXPECTED TO CONTINUE FOR THE NEXT DA Y OR SO WITH 
SOME DECREASE IN FORWARD SPEED AND A GRADUAL TURN TOWARD THE WEST- 
NORTHWEST ON TUESDAY.  ON THE FORECAST TRACK...THE CENTER WILL 
CROSS THE LOUISIANA COAST BY MIDDAY TODAY. 
MAXIMUM SUSTAINED WINDS ARE NEAR 115 MPH...185 M/HR ...WITH HIGHER 
GUSTS.  GUSTAV IS A CATEGORY THREE HURRICANE ON THE  SAFFIR-SIMPSON 
SCALE.  

(a)   Sample Document 

Q1: Storm Name = ‘Gustav’ AND Warnings CONTAIN ‘flo od’ 

Q2: Storm Name = ‘Gustav’ AND Storm Category > 2 

Q3: Document Type = ‘advisory’ AND Location = ‘Loui siana’ 
     AND Date FROM 08/31/2008 TO 09/30/2008 

 (b)   Sample Queries 

Figure 1: Sample Document and Queries 

Content Management products:  Microsoft Sharepoint [26] and 
SAP NetWeaver [29] allow users to share documents, annotate 
them and perform simple keyword queries. Hard-coded attributes 
can be added to specialized insertion forms. CADS improves 
these platforms by learning the user information demand and 
adjusting the insertion and query forms accordingly. 

Indexing, Provenance and Disagreement handling in data 
sharing environments:  Data Ring [1] allows multiple peers to 
share content by declaratively defining the schema and 
capabilities in XML and leaving to the system the indexing and 
replication of the data.  Orchestra [18] is also based on peer to 
peer schema integration and assumes the existence relational 
schemas. CADS maintains a centralized repository and hence 
these works cannot be directly applied. 

Information Extraction (IE): We have witnessed considerable 
progress in IE, which has been recently partitioned to Closed and 
Open IE. [8] provides a recent overview of the IE area. 

Closed IE requires the user to define the schema of the extracted 
tables along with rules to achieve the extraction. This is too much 
work for a user who inserts a document. The most relevant work 
in this area is the recent work of Jain et al. [21], which shows how 
IE systems can be combined to efficiently answer SQL queries on 
documents. However, they still assume that someone has created 
these IE systems for specific schemas.  

Open IE [11] is closer to the needs of CADS. In particular, Open 
IE generates RDF-like triplets, e.g., (Gustav, is category, 3) with 
no input from the user. Next, we describe why Open IE is not 
appropriate for our needs, even though we plan to adapt some of 
their ideas. Open IE leads to a huge number of triplets, which 
prevent the successful execution of 〈attribute name, attribute 
value〉 structured queries and the suggestion of appropriate 
attributes to the users at insertion and query time in CADS.  

The CIMPLE project [10, 6] uses IE techniques to create and 
manage data-rich online communities, like the DBLife 
community. In contrast to CIMPLE, where data is extracted from 
existing sources and a domain expert must create a domain 
schema, CADS is a data sharing environment where users 
explicitly insert the data and the schema automatically evolves 
with time. Nevertheless, the IE and mass collaboration techniques 
of CIMPLE can help in creating adaptive insertion forms in 
CADS.  

Schema Evolution: Note that the adaptive annotation in CADS 
can be viewed as semi-automatic schema evolution. Previous 
work on schema evolution [3] did not address the problem of 
what attribute to add to the schema, but how to support querying 
and other database operations when the schema changes. 

Query Forms: Existing work on query forms can be leveraged in 
creating the CADS adaptive query forms. [19] proposes an 
algorithm to extract a query form that represents most of the 
queries in the database using the "querability" of the columns. 
[20] extends this work discussing forms customization. [27] uses 
the schema information to auto-complete attribute or value names 
in query forms. A limitation of the above forms is that they do not 
consider the information demand or the entity matching 
uncertainties. In [6] keyword queries are used to select the most 
appropriate query forms. 

3. CADS PRELIMINARY DESIGN 
The CADS system has two types of actors: producers and 
consumers. Producers upload data in the CADS system using 
interactive insertion forms and consumers search for relevant 
information using adaptive query forms. In the rest of the paper 
the term data usually refers to a document; other types of data are 
also possible, but we focus on documents for simplicity. Figure 2 
presents a typical CADS workflow. Figure 3 shows the possible 
components of the two major CADS modules, the Insertion and 
Query modules. 

Insertion phase: The insertion phase begins with the submission 
of a new document to be included in the repository. After the user 
uploads the document, CADS analyzes the text and creates an 
adaptive insertion form with the set of the most probable 〈attribute 



name, attribute value〉 pairs to annotate the new document. The 
user fills this form with the required information and submits it. 
The final stage consists of the storage of the associated document 
and metadata in the CADS repository. 

Going back to our disaster management motivating scenario, 
Figure 4 presents the adaptive insertion form for the hurricane 
advisory document of Figure 1. After the user submits the 
document, the system analyzes the content, and finds that the 
following attributes are relevant:  “Storm Name”, “Storm 
Category”, “Warnings”. These attributes are added to a set of 
default attributes like: “Document Type”, “Date” and “Location”, 
which are basic metadata that a domain expert has provided for an 
application. The “Description” attribute is used to input the whole 
text of the document.  
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Figure 2: CADS Workflow. 

 Figure 3: Architecture of Insertion and Query Modules. 

In addition to extracting attribute names, the adaptive insertion 
form also extracts the attribute values by employing IE 
algorithms.  A confidence threshold for the IE must be set. A 
lower threshold may bias the user and lead to errors in the data, 
whereas a high threshold may lead to many empty textboxes, 
which may frustrate the user. Ideally, the erroneous values are 
corrected and the missing attribute values are manually inserted 
by the user.  This means that the quality of the data depends on 
the reliability of the users. User trust and anti-spam techniques 
must be considered for large-scale deployments of CADS.  

As shown in Figure 4, attribute names and attribute values are 
presented as text boxes. If the user wants to associate more than 
one value to an attribute − e.g., multi-valued attributes like 
“Warnings”− then she can use the plus icon at the right to add 
attribute values. Each textbox has auto-completion capabilities, 
which exploit similar entries inserted before in the same attribute. 

It is also important, to notice that a user can add new attributes, 
which are not suggested by the adaptive form. The form provides 
the option to do this task, in the spirit of the Google Base [14]. 
When the user specifies a new attribute, CADS will try to match it 
to existing attributes and show to the user a few matching options. 
The user can reject these suggestions and go ahead adding the 

new attribute. In this way, advanced users can collaborate for the 
schema construction. 

 

Figure 4: Adaptive Insertion Form. 

 

Query phase: In the query phase, the user is presented with an 
adaptive query form (Figure 5), which supports 〈attribute name, 
attribute value〉 conditions. Initially, before CADS has began 
learning the information demand through processing the query 
workload, the query form only specifies the default attributes 
(e.g., “Document type”, “Date”, “Location”). The user can specify 
additional 〈attribute name, attribute value〉 conditions. There is 
also a generic “Description” attribute where the user types 
keywords when she does not know how to put them in 〈attribute 
name, attribute value〉 conditions. The system discourages the user 
from just using the “Description” attribute, because this does not 
allow the system to learn the user information demand in a 
structured way, which in turn facilitates evolving the schema and 
performing schema mappings. 

In some cases the conditions may trigger additional attributes 
recommendation, which CADS believes could be helpful for the 
user to further refine the query. For instance, if the user specifies 
the attribute “Storm Category” and previous users who specified 
“Storm Category” also specified “Wind Speed”, then the adaptive 
query form will suggest to the user the attribute “Wind Speed”. 
Further, if the attribute specified by a user is similar to another 
existing attribute, CADS will suggest a mapping between the two 
attributes, in the spirit of pay-as-you-go integration. Also, the 
system may suggest replacing the text in the generic “Description” 
attribute value with some 〈attribute name, attribute value〉 
conditions. 

When the user decides that her query form is complete, she 
submits the query. In this last phase CADS will find the most 
important pieces of data (e.g., document) for the query. The 
querying strategy must combine keyword search with uncertain 
structured query principles. The system returns a ranked list of the 
results, where the ranking is personalized. In order to personalize, 
CADS may assume that users generally look for similar items 
every time they search. A user profile may also be used. Also, 
note that CADS will typically return whole documents in the 
result. However, if the schema of the repository is mature and the 
query is selective, it is possible to return specific attribute values, 
in a way similar to the NAGA system [23]. The latter query result 
type is a possible future direction for CADS. 



      
Figure 5: Adaptive Query Form. 

 

In Figure 5 we show the progression of an adaptive query form in 
the disaster domain. In the left window we show the initial status 
of the query form. The generic form starts with some default 
attributes: “Document Type”, “Location”, “Description”. The user 
is encouraged to specify other attributes, which do not only refine 
the query, but also help CADS learn the user information demand. 
For instance, in Figure 5 the user adds an attribute called “Storm 
Category” using the auxiliary window. Then, the form suggests to 
the user to also include the attributes “Storm Name” and “Wind 
Speed”, which are correlated with “Storm Category” in the query 
workload. After that, the system tries to auto-compete the attribute 
value for “Storm Name” again using the past query workload. 
Finally, the system asks a pay-as-you-go schema mapping 
question: if “Warnings” is equivalent to “Watch”, where the 
former is part of the existing schema (see Figure 4) and the latter 
is a user specified-attribute. 

 

Figure 6: Query Results. 

Figure 6 shows the results of the query. The document inserted in 
Figure 4 is the top result. Note that each result in the list may 
partially or fully satisfy the query, and is owned by a user. The 
trust degree of the owner for the querying user may be used as one 
of the ranking factors, in addition to factors like relevance and 
importance. 

4. CHALLENGES AND RESEARCH 
DIRECTIONS 
As mentioned in Section 2, the CADS platform can reuse much 
previous research on collaboration systems. However, many 
research pieces are missing, mainly regarding the algorithms 
behind adaptive insertion and query forms. We enumerate these 
challenges and preliminary ideas on how to address them. 

Discover best 〈〈〈〈attribute name, attribute value〉〉〉〉 candidates for 
a newly inserted document: This line of research will decide 

what attributes the adaptive insertion form will suggest to the 
publisher (inserter). The following factors must be considered: 

a) The information value, as specified by the past query workload 
W, which is related to the Value of Perfect Information in [22]. 
For instance, if the attribute “Storm Category” is used in many 
queries, then we may want to suggest it to a user that insert a 
document that contains the word “category”. We will assign an 
information value IA(Ai, W) denoting how useful attribute Ai is, 
given W. A simple way to compute IA(Ai, W) is to count the 
number of queries in W that specify Ai. If the user has already 
specified some conditions in the adaptive query form, our 
algorithm will use their correlation to Ai in W. We will create a 
probabilistic model based on the Probabilistic Information 
Retrieval (PIR) ideas of our previous work [7]. The estimation 
of IA(Ai, W) should also exploit the associations in the CADS 
Graph (Figure 7), which connect groups, users, and data. In 
particular, we assume that the data d submitted by a user u is of 
more interest to users x who are closely associated to u on G, 
e.g., through common groups. We can weigh the queries in the 
workload according to their relevance to u. 

b) The confidence that an attribute Ai is relevant for a to-be-
inserted document d. The rationale of this factor is that we do 
not want to suggest to the user an attribute just because it is 
popular in the query workload, if this attribute does not have a 
good chance to be relevant to d. Ai may be relevant to d if we 
discover (e.g., through IE algorithms) that Ai appears in d, or if 
another attribute Aj appears in d, which is highly correlated to 
Ai. The correlation will be computed based on W. Hence, the 
attribute confidence CA(Ai,d,W) depends on all Ai,d,W. We need 
to adapt Information Extraction (IE) algorithms to compute 
CA(Ai,d,W) for document data, which are the main focus of 
CADS. In particular, we should leverage the work on Open IE 
[11] to extract triplets of extracted data, and then apply 
thesaurus and ontological knowledge (e.g., WordNet), as [12]. 
Further, producers have an inclination to publish all their 
documentation with a similar structure, which the system could 
learn. This observation came from our interaction with the 
Miami-Dade County Emergency Office, where the published 
reports typically have a common header and structure. 

Matching of attribute names and attribute values across 
queries and inserted documents:  Given that CADS is an open 
system, it is possible that different users use different names or 
structures to represent the same concept. We should consider 
matchings between attribute names or between attribute values. 
The matching between different schemas is a well known problem 
[28, 33, 24, 34] with various proposed solutions based on analysis 
of the data content or the schema properties. A main principle in 
CADS is that integration will occur in a semi-automatic way at 
both insertion and query time. In order to minimize the user 
involvement, previous schema matching and entity 
disambiguation [ 35] methods must be adapted in order to create a 
good ranking of the candidate matchings at insertion and query 
time, and present the user with a very small set of disambiguation 
questions. The work on pay-as-you-go integration [22] is an 
excellent starting point. 

As in the case of attributes suggestion described above, candidate 
matchings M(r,s) are ranked based on two factors:  The 
Information Value IM(M,W) and the confidence CM(M,d,W).  The 
IM(M,W) measure is based on the following intuition: If a user 



submits attribute r, and s has a high information value in W, then 
the matching between r and s will also have high IM(M,W). The 
queries in W may be weighted based on their relevance to user u 
who submits d, as described above. 

The CM(M,d,W) consider not only the workload W but also the 
inserted data d. Our problem is different from previous pay-as-
you-go integration projects [25,22], because the integration 
occurs at insertion time and not only at query time. Hence, the 
confidence of a confirmed matching is much more credible than in 
the case of query-time integration, because the publisher confirms 
matchings of her own data, and not of possibly other sources. 
Further, the candidate matchings are ranked based on a 
combination of the data annotations and the raw data content 
(e.g., text of document). We could employ a learning algorithm, 
similar to the edge weight learning algorithm in [5], to weigh 
these factors based on the past user selections.  

Another difference is that  CADS can leverage the community 
links and data associations, represented at the CADS Graph 
(Figure 7) to guide the matching process. A matching algorithm 
can be created by expanding the similarity flooding idea [24] to 
operate on the more complex CADS Graph. In [24], the two 
candidate schemas were represented by a set of table schemas. In 
contrast, the CADS Graph also contains data instances, users and 
groups. Recent work [15, 32, 9] performed relevance ranking of 
the nodes for query answering purposes. We must adapt these 
works to do similarity ranking – e.g., combine FolkRank [15] with 
Similarity Flooding [24]. 

Storage of annotation data: It is challenging to efficiently store 
the documents and their metadata (extracted data), in a way that 
CADS will scale to thousands of users and millions of shared 
data. As different documents will have different attributes, this 
information could be very sparse, so a relational model could be 
very inefficient to implement. Further, attributes are dynamically 
added to the system. A more promising alternative is a triplet 
model, which represents (d,e,v) facts where d is a document id, e 
is the attribute name or predicate and v is the value of the 
attribute. The storage of triples is well studied in RDF systems 
[31]. It has also been studied in clinical management systems [9].  

Discover best conditions to suggest in adaptive query forms: 
We need to exploit past query workload, historic data and user 
interactions, to create the best adaptive query form for a user. A 
good adaptive query form will allow the user, who is not aware of 
the structure of the data in the repository, to better express her 
query. 

There has been significant work on user-friendly query interfaces 
(query forms) to express database queries, as discussed in Section 
2.  These works assume a well-defined schema (relational or 
XML) and a valid instance. In contrast, in our problem we have a 
set of data pieces, submitted by different users, with imprecise 
annotation schemata. Further, the content (e.g., text) of the data 
and the user associations must be considered. 

For every candidate attribute Ai (or value) in the workload W, we 
will assign a relevance score R(Ai,u,W,Q), given the user u and the 
current state of the adaptive query form Q, i.e. the already 
specified attributes and values.  Then, the top-k ranked attributes 
will be suggested to the user, where k is a small number 
depending on the size of the screen real estate of the adaptive 
query form. The relevance has the following components: 

a) The user affinity, that is, the relevance degree of user u to the 
attribute Ai. For that, we will create the query workload graph 
GW, where the attributes of the past queries of each user will be 
connected to the user, and the users will be connected to each 
other through common group nodes, as in Figure 7. That is, GW 
will have user, attribute and group nodes. We can use the idea of 
SimRank proposed in [2]. 

b) The correlation between Ai and the selected conditions Q. We 
can employ the ideas from our work on ranking SQL query 
results [7], where association rule mining is used to compute the 
attribute correlations. These techniques must be modified to 
account for the user associations. In particular, we will weigh 
the queries in W according to the relevance of the user who 
submitted each query to u. 

datatype

datatype

 
Figure 7: CADS graph  

Ranking query results: After the user submits the query to the 
system, CADS must use a strategy to rank the data d in the 
repository D. Recent work [15, 32, 4] on querying tagged Web 
pages is an excellent starting point on how tags and users can be 
leveraged to query Web pages. They generally model users, pages 
and tags as a tripartite graph and propose adaptations of the 
PageRank algorithm. However, these works view the queries and 
the annotations (tags) as lists of keywords, that is, they do not 
consider any structure on the query or the annotations. Further, 
they only use the tags of the pages and not the page content. 
Instead, our ranking algorithms will exploit both the annotation 
structure and the raw content of the data. 

A unique characteristic, which has not been studied before, is that 
a data piece d may be relevant to a query q either based on its 
annotations or based on its raw content. This introduces semantic 
and performance challenges. How should the annotations be 
weighed vs. the content to achieve a relevance score for d? How 
can we create efficient hybrid algorithms that avoid querying both 
the annotations and the content of d? 

In terms of ranking semantics, if the query contains both 
structured conditions (“city”=“Miami”) and plain keywords 



(“flood”), a possible strategy is to use the structured query as filter 
and use the keyword query for ranking. This strategy is simple to 
implement, but assumes that the structure part of the database is 
complete and correct. As some documents are not appropriately 
annotated, the system needs a more intelligent strategy that takes 
into account the probabilistic nature of the annotations, that is, we 
are not sure if an annotation is missing because it is not 
appropriate for d, or because the publisher did not spend the time 
to add. Nevertheless, annotations should generally be viewed as 
more important than the raw text, because they can provide a 
Boolean match to the query. In contrast the text only provides a 
fuzzy matching. Hence, a query strategy may primarily rank the 
results d by how much the annotations of d match the query 
conditions, and secondarily on the IR-style relevance of the query 
to the text of d. Learning algorithms must be created to balance 
these factors based on the user feedback, i.e., results click-thru. 

To address the problem of the probabilistic nature of the 
annotations, previous work on ranking under uncertainty [17] 
must be adapted for the hybrid filter/ranking model of CADS 
querying. This incurs efficiency and scalability issues, which 
require smart execution algorithms to achieve real-time responses.  

5. CONCLUSIONS  
We proposed CADS, a Collaborative Adaptive Data Sharing 
platform, which is a next-generation data sharing platform where 
the annotation and integration occur at both the data insertion 
(production) and querying (consumption) actions. A key goal of 
CADS is to leverage the information demand to create adaptive 
insertion and query forms. We believe that CADS has a great 
potential to improve many collaboration environments, and hence 
it is worthwhile to pursue research directions that will allow the 
realization of CADS. 
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ABSTRACT
In this paper, we present a framework for improving the
ranking function training and the re-ranking process for web
search personalization. Our method is based on utilizing
clickthrough data from several users in order to create mul-
tiple ranking functions that correspond to different topic
areas. Those ranking functions are combined each time a
user poses a new query in order to produce a new ranking,
taking into account the similarity of the query with each of
the topic areas mentioned before. We compare our method
with the traditional approaches of training one ranking func-
tion per user, or per group of users and we show preliminary
experimental results.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval—Relevance feedback, Search process,
Clustering .

General Terms
Algorithms, Experimentation, Measurement

Keywords
Search engine, ranking, training, clickthrough data, rele-
vance judgement, clustering

1. INTRODUCTION
Lately, a lot of effort has been put in finding ways to

personalize web search results. Several models for ranking
function training have been proposed [21, 3, 6] and a great
number of studies on user search behavior and feedback have
been performed [20, 1, 7, 12].
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To the best of our knowledge, most approaches of learning
ranking functions for search personalization, utilize machine
learning techniques that train a ranking function for a user
or a group of users with similar search behaviour. So, no
matter how diverse the search topics of a user, or a group of
users sharing a common ranking function training, are, the
re-ranking/personalization of the search results is based on
the same model.

However, it is often the case that a user searches in more
than one different areas of interest that could lead to com-
pletely different ranking function training models. Consider
for example the following search scenario. A phd student
working on information retrieval (IR) issues would like to
search for papers related to clickstream data, machine learn-
ing techniques and ranking. Her search is usually based on
keywords related to IR. Since ACM is a well-known digital
library, she would probably prefer clicking on results from
that data source. So, a proper model for this search behav-
ior would train a ranking function that favors results whose
titles have high textual similarity with the query and results
containing the word “acm” in their title or url.

However, the user would also like to search for information
about a new cellphone she would like to buy. She would use
the brandname of the cellphone as well as words like ”re-
view” or ”hands on” as keywords. Also, she would probably
click on results coming from forums where users discuss their
experience/opinion about the cellphone and/or on video re-
sults which would present the phone’s functionality. So a
model suitable for this kind of search would favor results
containing the word “forum/blog” in their url and video re-
sults.

Thus, it is evident that training a single ranking function
per user or per group of users with similar search behavior
does not capture the diversity in topics areas that are of user
interest.
Our approach. In this work, we address the aforemen-
tioned problem. We present a framework that creates mul-
tiple ranking functions, each one corresponding to a differ-
ent topic area, which are finally combined to produce a final
score for each search result. The main idea is that a rank-
ing function is not trained for a single user, neither a group
of users with similar search behavior. On the contrary, one
ranking function is trained per topic area. That is:

1. We gather clickthrough data from several users and



extract triplets of the form: (query, result list, clicked
results list).

2. Then, we cluster the clicked results based on their tex-
tual similarity and for each result cluster Ci, we train a
different ranking function Fi using Ranking SVM. So,
when a user poses a new query, each ranking function
Fi will give a different rank rij for each query result j.

3. We compute the similarity between the query and each
cluster Ci, and we represent it with a weight wi.

4. We then exploit wis to produce a final ranking list of
results to present to the user.

Outline. In Section 2 we discuss the background issues re-
lated to ranking function learning. In Section 3, we present
our method for adjusting the ranking function training and
result re-ranking according to the content of each new query.
In Section 4 we present a preliminary experimental evalu-
tion. Section 5 presents the related work and, finally, Section
6 conludes and discusses further work.

2. RANKING FUNCTION TRAINING
In this section, we present background information on

ranking function training. We outline the steps that com-
prise this process, including: a) extraction of relevance re-
lations, b) extraction of features, and c) training of ranking
function.
Relevance relation extraction. Based on the results of a
query, relevance relations can be extracted from either abso-
lute or relative preferences. An absolute preference suggests
that a search result is either relevant or irrelevant to a query.
A relative preference suggests that a search result is more
relevant to a query than another result.

The extraction of those relations is mainly based on the re-
sults the user viewed or clicked. There are many approaches
for extracting relevance relations. For instance, in [7, 11],
where an approach that uses relative preferences is adopted,
relevance relations are extracted by taking into considera-
tion the relative position of a pair of results in the initial
ranking. For example, a clicked result c is considered more
relevant than all non-clicked results which are placed higher
than c in the ranking list. An example of absolute prefer-
ence is presented in [14]. In this work, if a result is clicked,
then it is considered relavant to the query.

Usually, every query-result pair is assigned a score or a
label, named its relevance judgement, that denotes the de-
gree of relevance between the result and the query. The set
of query-result pairs, together with the corresponding rele-
vance judgements, comprise the first component that is in-
put to the training process. The second component involves
feature extraction from the query-result pairs.
Feature extraction. Every query-result pair is represented
by a feature vector which quantifies the matching quality be-
tween the query and the result. There exists a great variety
of features that can be used in this process. Content-based
features, which can be extracted from the title, the body,
the anchor and the url of a result, can be used to esti-
mate content similarity between the query and the result
[9]. Some other features are based on hyperlink information
(i.e., pagerank values) [2], or on specific information of the
results such as the domain of the url or the rank of the re-
sult in several search engines [7]. Also, such features may

incorporate statistical information over user behaviour, e.g.,
deviation from average time spent for viewing pages [1].
Ranking function training. Ranking function training
aims at assigning a proper weight for each feature used in
feature vectors. Those weights indicate which features are
more important for ranking the search results in the context
of the particular training process. Several training methods
have been proposed, such as Ranking SVM [21], RankNET
[3], RankBoost [6] as well as tuning methods for the afore-
mentioned techniques [4].

Figure 1 shows the overall training process. Once the
ranking function is trained, the results for each new query
are re-ranked according to scores produced by the ranking
function. Those scores are calculated utilizing the weights
found in the previous step and the feature vector of each
new search result. In the example, three labels are used
for relevance judgement: irrelevant, partially relevant and
strongly relevant results respectively. For each query-result
pair viewed or clicked by the user, these relevance judge-
ments can be extracted implicitly as described previously in
this section. For example, if a result is not clicked at all,
it is irrelevant. If it is clicked only 1-2 times, it is partially
relevant, while if it is clicked more times, then it is strongly
relevant.

We should note that, regardless of the approach adopted,
there has to be a specific representation of the relevance
relations, so that they can be used as input to a ranking
function training system. In this paper, we adopt the repre-
sentation format of SVMlight1, which is a popular tool that
implements Ranking SVM. Also, we should point out that
our method sticks to the process described above, proposing
a different perspective in the training and re-ranking phases.
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Figure 1: Ranking function training.

3. COLLABORATIVE TRAINING
In our method, we consider clickthrough data of the form:

(query, result list, clicked results list). We are based on
Joachims model [7] according to which a clicked result is
more relevant to the query than all non-clicked results in
higher rank. These relevance relations produce relevance

1http://svmlight.joachims.org/



judgments to train a ranking function and adapt ranking to
user needs.

Our aim is to have multiple ranking functions, each one
trained per search topic. We identify search topics by clus-
tering user clickthrough data, and more specifically results
clicked by users. Our approach involves the following steps:

• First, we perform clustering on the clicked results of
all queries posed by users. We choose to cluster the
clicked results instead of the queries to capture user
behaviour because we consider them more informative
about the user information need. According to the
well known example, if a user searches for “jaguar”,
some results will be related to the animal and some
others to the car. If we use the query text and cluster
the queries, the information about which of these two
concepts the user is actually interested in will be lost.
On the contrary, if we cluster the clicked results using,
i.e., title and abstract text, we will be able to capture
her actual interest.

After the clustering is performed, groups of results
with similar content are formed. We call these groups
topic clusters.

• We need a mechanism to calculate the similarity of ev-
ery new query with each of the extracted clusters. For
this reason, we use titles and abstracts of all (clicked)
results belonging to a cluster as the textual represen-
tation of this cluster. We build an inverted file index
to be able to calculate the similarity of the query with
the textual representation of each cluster.

• We need to create one ranking function model per topic
cluster. To achieve that, we use as training input only
clickthrough data related to the corresponding topic
cluster.

• This final step deals with the re-ranking of the results,
utilizing the clusters created previously. When a new
query is posed, we re-rank its results using all available
ranking function models producing N different rank-
ings, where N the number of topic clusters. In order to
compose the final ranking, we combine those rankings
taking into account the similarity of the query with
each topic cluster.

Next, we describe in detail the aforementioned steps.

3.1 Clustering of Search Results
Consider a feature space φ of n terms, φ = {t1, t2, . . . , tn},

where n is the total number of distinct terms in all clicked
results for all queries of all users. We represent each result
by a feature vector vi = {wtdi1, wtdi2, . . . , wtdin}, where
wtdik = tfik∗log(N/dfk), tfik is the frequency of occurrence
of term tk in document i, N is the number of results, and dfk

is the number of results that contain the term tk. We should
note that, in our approach, we take into consideration the
title and the abstract of each result in order to extract those
features.

After extracting the features, we cluster the results having
similar content. We use a partitional clustering method that
utilizes repeated bisections [16, 17]. This method has been
shown to have excellent performance when dealing with doc-
ument collections [16]. In the following, we give an overview
of the clustering method.

All documents (i.e., search results) are initially partitioned
into two clusters (i.e., bisected). Then, one of these clusters
is selected and is further bisected. This process is repeated
until we get the desired number of clusters. In each step,
the selection of the cluster to be bisected and the bisection
itself, is done in such a way that the bisection optimizes the
value of a clustering criterion function.

The criterion function used to form the clusters aims at
maximizing the following quantity:

k∑
i=1

√ ∑
v,u∈Si

sim(v, u)

where k is the number of clusters, Si is the set of documents
of cluster i, and sim(v, u) is the similarity value between
documents v and u in Si.

We employ the cosine similarity as the metric that com-
pares two documents. We apply the cosine similarity func-
tion on the documents’ feature vectors as shown in the fol-
lowing Equation:

sim(v, u) =

∑n
i=1(wtdvi × wtdui)√∑n

i=1 wtd2
vi ×

√∑n
i=1 wtd2

ui

Following this process, we obtain N topic clusters, with
each one containing similar clicked results.

3.2 Cluster Indexing
Given a topic cluster Ci, we extract the text from the titles

and abstracts of all the results it contains. We regard this
text as the cluster’s textual representation. In this way, we
obtain a collection of “documents” representing the topic
clusters. Then, we build an inverted file index on these
documents using the Lucene2 IR engine. The index is then
used to calculate the similarity of any new query (see Section
3.4) with each cluster:

1. We pose the query to the Lucene search engine.

2. The search engine uses its own scoring function to cal-
culate the simirarity of each indexed document with
the query.

3. A list of documents is returned, along with a score that
indicates how similar to the query they are.

4. The scores are normalized so that the sum of all scores
equals to 1.

5. We assign each normalized document score to the cor-
responding topic cluster.

3.3 Ranking function training
For every extracted topic cluster Ci we train a different

ranking function Fi as described in Section 2. The training
is based on Joachims’ model [7, 11] using ranking SVMs.
Relevance judgments and feature vectors are used as input
to the SVMs. The relevance judgements are produced by
the users’ clicks. To construct feature vectors, we have im-
plemented the following features:

1. Textual similarity between query and (title, abstract,
URL) of the result. The similarity is computed with 3
different types: tfidf, BM25 and Lucene scoring func-
tion. This results to 9 different similarity features.

2http://lucene.apache.org/
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Figure 2: Training and re-ranking approaches

2. Domain of the result (.com, .edu, etc): 73 boolean
features (i.e., exist or not).

3. Rank of the result in Google search engine.

4. Special words found such as “blog”, “forum”, “wiki”,
“portal”, etc, found in the result’s title, abstract or
url. Each word corresponds to 3 feature values. These
values depend on the similarity scores of this word on
the result’s title, abstract and url.

5. URL suffix (.html, .pdf, .ppt): boolean features.

6. 100 most frequent words found in all result documents
of all previous searches. Each word corresponds to 3
feature values. These values depend on the similarity
scores of this word on the result’s title, abstract and
url.

As training input for the Ranking SVM, we use only click-
through data related to the corresponding topic cluster. That
is, we regard only query-result pairs, where results belong
to the same cluster. This process results to the creation of
N ranking function models, where N is the number of topic
clusters.

3.4 Re-Ranking
All steps described in the previous sections regard the

training phase. This section deals with re-ranking which is
performed after training is over. Re-ranking involves the
following issues:

• When a user poses a new query q, its similarity score
wqi with every topic cluster Ci is calculated as de-
scribed in Section 3.2.

• Then, using each ranking model Fi, we produce N dif-
ferent rankings Rqi for query q (rqij the rank of result
j) according to model Fi, corresponding to cluster Ci.

• The final rank for each result j for query q is given by
the type:

rank(q, j) =

N∑
i=1

wqirqij

4. EXPERIMENTAL EVALUATION
In this section, we present a preliminary experimental

evaluation of our method. First, we present our experimen-
tal dataset.

4.1 Dataset
In order to obtain clickthrough data, we set up a logging

mechanism over Google Search Engine. The application is
able to keep track of the queries posed by the users, the re-
sult list returned from Google (i.e., title, abstract and URL),
and the result URLs that were clicked by the users. Also, it
records auxiliary information, such as (a) the IPs, so that we
are able to distinguish the users, and (b) the exact date and
time of queries and result clicks, in order to be able to divide
the clickthrough dataset into training and test dataset.

We asked from 10 users, phd students and researchers
from our lab, to search on Google for information relevant
to a given set of topics for a two-months period. The search
topics were the following: Gadgets, Cinema, Auto & Moto,
Life & health, and Science. The users were asked to select
1 to 3 out of these topics and focus their search mainly
on those, without, however, to restrict them from searching
for information relevant to the other topics. During this
period of time, we got clickthrough data for 671 queries.
We used 75% of clickthrough data as the training dataset
(501 queries), and the 25% as the test dataset (170 queries).

4.2 Preliminary Results
We evaluate the effectiveness of the following approaches

for training ranking functions:

T1: Training one ranking function per user.



T2: Training one ranking function per group of users who
are expected to have similar search behaviors.

T3: Collaborative ranking function training (our approach).

Our dataset is based on implicit user feedback, and not
on data explicity judged. Thus, there are only a few rele-
vance judgements for the results of each query. So, it was
not possible to use evaluation metrics such as Precision and
Mean Average Precision, since those metrics require a great
number of query results in the test dataset to have rele-
vance judgements. In our case, for most queries we have
judgements (i.e., clicks by the users) for 1 or 2 results.

However, what we were able to do, was to compare the
ranks coming from the different ranking function training
approaches. Specifically, we executed 3 rounds of ranking
function training and re-ranking (one for each approach T1,
T2 and T3), and compared the ranks of clicked results in
the new re-ranked result lists.

The results are presented in Table 1. Since our method
depends on clustering quality, we also give results obtained
varying the number of clusters created (see Section 3.1).
The values presented in column “T3-T1” (“T3-T2”) are the
average differences in the ranks of the clicked results in the
new re-ranked result lists produced by approaches T1 and
T3 (T2 and T3). For example, the value 3 shows that our
approach T3 moves the clicked results 3 positions higher, on
average, compared to T1.

num of clusters T3-T1 T3-T2
5 3 27
10 -14 11
15 -11 10
20 -9 15
25 -12 12

Table 1: Average differences of clicked results ranks
in the new re-ranked result lists

Determining the proper clustering arrangement, we can
improve the re-ranking process for personalization of search
results. We can see that for the first clustering arrangement
(5 clusters) our method outperforms the other two.

Some interesting results are presented in Table 2 where
each cell shows the percentage of clicked results belonging
to each cluster for each user. For example, 31% of results
clicked by user 2 belong to the topic area represented by
cluster 1.

We observe that there are users who searched only in one
topic area (users 1 and 10), users who searched mainly in
two areas (users 2, 5 and 7) and users who searched in many
areas (users 3, 4, 6, 8 and 9). This observation supports our
intuition that we should train and use more than one ranking
models even for the same user.

We also observe that users 1, 3, 4 and 7 dedicated a re-
spectable percent of their searches in the topic area repre-
sented by cluster 4, and, similarly, users 5, 7, 8 and 10 for
cluster 5, and users 5, 6, 8 and 9 for cluster 3. This supports
our intuition that we should train and use ranking models
by combining clickthrough data from more than one users.

Finally, we should note here that we do not aim at compar-
ing the efficiency of different training and ranking models,
but at examining how our method improves the effectiveness
of a given model (in our case Ranking SVM), by creating

multiple ranking functions and combining them according
to the user search needs.

5. RELATED WORK
In what follows, previous approaches regarding the prob-

lem of increasing the quality of ranking function training and
re-ranking are presented. In [18] the authors utilize concept
hierarchies like ODP3 to categorize queries and build user
profiles. They, then, use collaborative filtering techniques to
re-rank query results based on those profiles. Our method
differs in that we do not construct different profiles for each
user, but utilize the information from several users to create
topic clusters, in which users participate.

The approaches described in [12] and [10] are based on
rank promotion of results having low rank. The initial rank-
ing presented to users is slightly altered using several strate-
gies, so that more results are judged by the users. As a
result, a better ranking function training is achieved.

Finally, clustering is exploited in SVM Ranking methods,
but to achieve different goals. In [8], clustering of results is
utilized in order to refine a large training data set, by reject-
ing those data that are not necessary for the SVM training
phase. Also, in [5], clustering is performed on the ranking
functions learned from training data taken from different
users. In [19] we used clustering to increase the training
input, inferring relevance judgements for unjudged results.

6. CONCLUSION
In this paper, we presented a methodology for improving

the quality of ranking function training. Performing clus-
tering on clickthrough data involving search results clicked
by the users, we find groups of similar results that repre-
sent topic areas. Based on those groups, we train multiple
ranking functions each one corresponding to a different topic
area, which are finally combined to produce a final score for
each search result.

The intuition behind our method is that a user may ex-
hibit more than one search behaviors, which cannot be rep-
resented by a single ranking model. However, if we exploit
multiple instances of a ranking model, that are collabora-
tively trained for all users, better results can be achieved.
Thus, we suggest an approach where one ranking function is
trained per topic area, contrary to approaches where a rank-
ing function is trained per user, or for a group of users with
similar search behavior. The experiments show that our ap-
proach gives better results compared to those approaches.

Our work is in progress and this is a first-cut approach
to this problem with preliminary experimental results. Ev-
idently, there is room for improvements and expansions.
First, we plan to perform more extended experiments with
larger datasets in order to obtain more reliable results and
study the effects of clustering in the topic area detection. We
also plan to study whether classification techniques using
pre-defined concept hierarchies (ODP) can help in detecting
more appropriate topic areas. Finally, we will study more
sophisticated mechanisms for inferring topic areas. Now, we
cluster clicked results based on their textual content simi-
larity. We believe that we could achieve better results by
performing clustering exploiting the similarity values of fea-
ture vectors for each query-result pair.

3http://www.dmoz.org/



user Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
1 0 0 0 100 0
2 31 67 0 2 0
3 6 11 16 67 0
4 11 48 0 41 0
5 0 0 32 4 64
6 10 4 72 7 7
7 2 0 4 24 70
8 9 7 24 5 55
9 27 4.5 55 4.5 9
10 2 2 2 0 94

Table 2: Percentage of clicked results belonging to each cluster (topic area) for each user.
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ABSTRACT
We propose a novel technique for web search personalization
that exploits the clustering of the results of web searches.
Our approach is based on an automatic characterization of
the user search history through the collection of semantic
domains and web sources chosen by the user. The semantic
domains are the terms extracted directly from the clusters
contents which describe the main topics covered by the in-
volved documents. The web sources are the web roots of
the urls of the documents. The idea is that a user submits
a query to a general purpose search engine and then selects
clusters or documents from the resulting list. In the first case
we can assume that, for that particular query, the user is in-
terested in the topics covered by the selected clusters. We
use these information to construct a user profile by assign-
ing the clusters semantic domains to the query submitted by
the user. In the second case we keep trace of the relevance
and reliability of web sources of the selected documents, by
assigning them to the submitted query.

1. INTRODUCTION
Recent researches investigate the ability of current search

engines to address the diverse goals that people have when
they submit the same query to a search engine. The poten-
tial value of personalizing search results is quantified and
great variance was found in the results that different indi-
viduals rated as relevant for the same query. The analysis
suggests that while search engines perform well in ranking
results to maximize global happiness, they do not do a very
good job for specific individuals [22]. In recent years a lot
of research work was devoted to overcome this limitation
by proposing ways to make the search engine aware of the
context of its users in order to adapt the search results with
respect to it. By learning the context of the users it is possi-
ble to personalize the search engine result list and to provide
more valuable results to user queries.

In this paper, we present a novel approach of web search
personalization, that exploits the clustering of the resulting
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documents in order to create a complete user profile based
on a characterization of the user past search history. This
operation is realized through the usage of two different in-
formation: the semantic domains, and the web sources. In
particular, for semantic domain we mean a term sd that ex-
press a “user-specific meaning” of a generic query term qt

(for example if qt = Java we can have sd = “language” or sd

= “island”). The aim of these domains is to disambiguate a
general query term w.r.t. the user preferences. On the other
hand, for web source we mean the root of the sources consid-
ered reliable for the user (i.e. www.java.com) w.r.t her/his
past searches and document choices. This mechanism of
user profile construction has two important characteristics:
it is automatically realized without any explicit effort from
the user or other contributions from external sources (i.e.
ontologies, thesaurus, etc.), and it works at the level of web
sites, differently from most of other personalization tech-
niques that act directly on specific documents.

The final goal of our contribution is to learn the prefer-
ences of a user in order to support a personalized ranking of
future results (both at document and at cluster level), and
to provide the user with additional queries which may be
interesting with respect to her/his profile.

2. RELATED WORK
Our work is part of a long research stream on personaliza-

tion in Web searches. The work in [15] proposes a technique
to map a user query to a set of categories, which represent
the user’s search intention. The set of categories are used to
disambiguate the query terms while a user profile is learned
from the user history and a category hierarchy respectively.
This work is different from our in the usage of a predefined
set of domains documents are classified in. The Inquirus 2
project [21] uses context information, currently in the form
of a category of desired information (“personal bookmarks”,
“research papers”, etc.). Differently from our approach this
work does not exploit clustering of pages and the categories
used to classify pages are not based on the semantics of their
contents.

The work in [3] focuses on re-ranking the Web search out-
put according to the cosine distance between each URL and
a set of terms describing user’s interests. An evolution of
the work is [4] which proposes to improve Web queries by
expanding them with terms collected from each user’s per-
sonal information repository (personal collection of text doc-
uments, emails, Web pages, ...). An alternative approach is
to compute a topic-oriented PageRank [9], in which PageR-
ank vectors biased on each of the main topics of the Open



Directory were initially calculated off-line, and then com-
bined at run-time based on the similarity between the user
query and each of the topics. In this work the set of top-
ics is predefined, while in our approach topics are dynami-
cally built. The idea is extended in [17] by distributing the
PageRank across the topics it contains in order to generate
topic-oriented rankings. An algorithm that avoids the mas-
sive resources needed for storing one personalized PageRank
vector per user by precomputing them only for a small set
of pages and then applying linear combination is proposed
in [11]. Machine Learning on the past click history of the
user [19] can be used in order to determine topic preference
vectors and then apply Topic-Sensitive PageRank.

Alternative approaches are based on the idea of expand-
ing the user query with new terms related to the input key-
words. Such relationships are usually extracted from large
scale thesauri, as WordNet [7, 20, 12, 16]. The study in [5]
proposes a new method for query expansion based on query
logs. The central idea is to extract probabilistic correla-
tions between query terms and document terms by analyz-
ing query logs. These correlations are then used to select
high-quality expansion terms for new queries. [13] proposes
a method to generate refinements or related terms to queries
by mining anchor text for a large hypertext document col-
lection. Search results can be grouped based on different
query meanings [10]. It is done using WordNet to determine
the meanings of each query term and merging similar senses
with a grouping algorithm that employs a combination of
categorization and clustering techniques.

Another important research stream is devoted to exploit
query expansion in order to obtain a better formulation of
user query. The main idea is that useful information can
be extracted from the relevant documents returned for the
initial query. A literature review of the beginnings of this
research topic is described in [6]. [2] introduces the usage
of clusters asking users to choose relevant clusters, instead
of documents, thus reducing the interaction. Summariza-
tion can be used to extract informative sentences from the
top-ranked documents and uses these sentences to expand
the user query [14]. RIB (Recommender Intelligent Browser)
[25] categorizes Web snippets using socially constructed Web
directory such as the Open Directory Project. Snippets are
clustered to improve the categorization. The created user
profile is used to propose search results to users. [8] pro-
poses a method to personalize a user’s experience within
a folksonomy using clustering. In particular, unsupervised
clustering methods are used for extracting commonalities
between tags, and the discovered clusters are used as inter-
mediaries between a user’s profile and resources in order to
tailor the results of search to the user’s interests. These ap-
proaches are different from ours in the usage of a predefined
set of categories: terms are generated to classify pages on-
the-fly using the page contents. Similarly, [24] explores an
approach that focuses on the “social annotations of the web”
which are annotations manually made by normal web users
without a pre-defined formal ontology. Compared to the
formal annotations, although social annotations are coarse-
grained, informal and vague, they are also more accessible
to more people and better reflect the meaning of the web
resources from the users’ point of views during their actual
usage of the web resources. The derived emergent semantics
are used to discover and search shared web bookmarks.

Figure 1: Results presentation at clusters level.

3. OUR APPROACH
Our personalization proposal is based on the idea of track-

ing the choices performed by the user on the list of results
obtained after she/he submits a query. The proposed ap-
proach exploits Matrioshka [1]. It allows users to submit
queries to search engines (such as Google, Yahoo, Google
Scholar) in order to obtain clustered and labeled results.
Search engines return results representing Web pages char-
acterized by title, url and snippet. When one submits a
query to a selected search engine, the resulting documents
are clustered using the Lingo clustering algorithm [18]. The
result is presented as a list of labeled and ranked clusters.
Labels are built considering the set of most relevant terms
extracted from titles and snippet of the clustered documents.
The retrieved significant terms are also used in order to de-
fine a disambiguated query for each cluster. The role of
the new queries is to allow deepening the search with more
specific queries.

The result of a query submission is shown in Figure 1.
In the first column are presented the retrieved clusters. In
particular, each cluster ci is characterized by a label li, an
overall weight owi of relevance of the cluster general content
w.r.t. the submitted query, the set of weighted semantic do-
mains Si = {sdi1, ..., sdij , ..., sdin} associated with the clus-
ter, and their corresponding weights wsdij . In the second
column are presented the disambiguated (expanded) queries
extracted from each resulting cluster.

The personalization process is based on the tracking of the
choices performed by the user on the result list of clustered
documents. Our objective is to learn the user preferences,
and to use them in order to:

1. rank the clusters of a search result list, showing in the
first positions the clusters containing more interesting
contents from the user viewpoint;

2. rank the documents contained in each cluster, in order
to show in the first positions inside each cluster the
documents belonging to the sources the user preferred
in previous search processes;

3. recommend a set of terms taken from her/his profile for
the expansion and the specialization of her/his original
queries.



To achieve our goals, we consider two types of interaction
between the user and the list of the retrieved clusters:

1. Query execution: the user chooses to submit a query
either by typing it in the search engine or by choosing
it in the set of the disambiguated queries associated to
clusters or by choosing one of the recommended terms.

2. Click tracking: the user chooses a specific document or
a specific cluster, in order to explore it.

Both actions indicate that the user is interested in a cer-
tain topic. We use these information to create a user profile.
In particular, we store:

1. the web sources (W = {ws1, ws2, . . . , wsn}) of the cho-
sen documents (such as www.expedia.com, etc). Such
information are used to assign a reliability degree to
each source. Intuitively, users choose to explore the
pages of sources considered reliable, we increase the
ranking of the sources users seem to prefer;

2. the semantic domains (S = {sd1, sd2, . . . , sdm}) con-
sidered interesting by the user. Such information are
represented by the keywords corresponding to the clus-
ters of interest.

These information are closely related to a specific submit-
ted query and build the history we want to learn.

Differently from the techniques commonly used in per-
sonalization, we do not track the information related to a
specific document (e.g. url, title, snippet, . . . ) because such
information have a too fine granularity for the personaliza-
tion process. Furthermore, the usage of the information of
single documents often represents a limitation. For example:

1. it is possible to find urls representing different sections
of the same web site. To keep trace of all of them,
we need to store different information about the same
document, obtaining duplicates and wasting space;

2. if we track the exact document url, the stored infor-
mation could be used in order to represent only that
document, and, in particular, only that single page of
the entire web site. So, if we retrieve correlated (con-
tiguous) pages as result of the same search, we can
bring in the first positions of the resulting list only the
pages that has a traced url;

3. the results of different submissions of the same query
on a search engine are often different, especially if they
were obtained by submissions very distant in time,
even if the document sources are usually the same.

Hence, our general assumption is that a user is not actu-
ally interested in a specific page of a web site, but she/he
is more interested in obtaining documents from a reliable
“favorite” source, as first results of a specific query.

So, let us suppose that a computer scientist submits the
queries “java” and “apple”. We assume that s/he is first
interested in obtaining results from her/his more reliable
sources such as www.java.com and www.apple.com respec-
tively, rather then from other sites such as www.sun.com or
www.allaboutapple.com/, or from incoherent sources such
as www.bali-travel-online.com (that considers java as an
island) and www.applefruit.it (that considers apple as a
fruit). The discrimination on the individual documents is
less important under the same query.

4. HISTORY MATRICES
To store all the information needed by the personaliza-

tion process we propose a data model based on the use of
matrices. In particular, we conceive three types of matrices,
the User Profile matrix, the Source Reputation matrix and
the Source Annotation matrix. In this section we give the
details about each of them.

4.1 User Profile matrix
The User Profile matrix P is constructed from the user

query terms and the semantic domains associated with the
clusters the user has clicked on. Given a query Q composed
of a set of terms {qt1, qt2, ..., qtn}, every time the user clicks
on a cluster c, identified by the semantic domains in S, it
means that the user is interested in the semantic domains in
S, with respect to the query Q. This consideration is used
to update the User Profile matrix which associates a degree
of relevance between query terms and semantic domains. In
fact, the matrix represents the function P : {qti, sdj} → wij ,
which associates with each query term qti and each semantic
domain sdj a weight wij which indicates how relevant sdj is
with respect to qti.

In particular, the weight wij of a couple {qti, sdj} is the
average of the weights of sdj in their original clusters. Such
average is computed with respect to the number of times
the user has clicked on a cluster containing sdj among its
semantic domains. Moreover, in the matrix each query term
is coupled with the number of times the user has asked for
a query containing that term, and each semantic domain
is coupled with the number of times the user has been in-
terested in that semantic domain (which means s/he has
clicked on a cluster containing those keywords). The matrix
is represented as:

{sd1,f1} . . . {sdm,fm}
{qt1,f1}

. . . wij

{qtn,fn}

where:

wijnew =
wijold ∗ fjold + wjc

fjnew

,

is computed incrementally using the weights of the semantic
domain (sdj) obtained for the same query term (qti) but
in various submission, and fjnew = fjold + 1 is the new
frequency value associated with sdj .

Let us suppose the user queries “London” for the first
time and obtains as a result the following two clusters (for
each cluster is indicated its set of semantic domains and the
weight each of them has in the cluster):

c1: {(hotel,0.4),(travel,0.6)}

c2: {(theater,0.2),(movie,0.3),(entertainment,0.5)}

the user then clicks on the second cluster in order to examine
its content. This action would result in the following User
Profile matrix:

{theater,1} {movie,1} {entertainment,1}
{london,1} 0.2 0.3 0.5

Let us now suppose the user queries “London hotels” and
obtains the following clusters:



c3: {(flight,0.4),(travel,0.6),(entertainment,0.3)}

c4: {(economic,0.2),(booking,0.3)}

and then clicks on the first cluster. The new User Profile
matrix is1:

{th,1} {mo,1} {en,2} {fl,1} {tr,1}
{london,2} 0.2 0.3 0.4 0.4 0.6
{hotel,1} 0 0 0.3 0.4 0.6

The weight of the semantic domain “entertainment” for the
query term “london” is evaluated as (0.5 + 0.3)/2 = 0.4.

Note that if we compute the logic AND between the query
term “london” row and query term “hotel” row, we can eas-
ily identify which semantic domains are related to the multi-
word query “london hotel” (in this case: flights, travel and
entertainment). Thus, this matrix is suitable for both single-
term and multi-term queries.

4.2 Source reputation matrix
The Source Reputation matrix R is constructed from the

query terms and the web sources of the documents the user
has clicked on. Given a query Q, we assume that every
time the user clicks on a document, s/he is interested in
that specific source of information with respect to the query.
This consideration is used to update the source reputation
matrix which associates a frequency between query terms
and web sources. In fact, the matrix represents the function
R : {qti, wsk} → fik, which associates with each query term
qti and each web source wsk a frequency fik which is the
number of times the user has clicked on a document whose
source is wsk, with respect to the query. The matrix is
represented as:

ws1 . . . wsk

qt1
. . . fik

qtn

Let us suppose the user queries “London” and then clicks
on the following documents:

d1: en.wikipedia.org/wiki/London

d2: www.visitlondon.com/

d3: www.expedia.co.uk/

Subsequently, the user queries “London hotels”, and then
clicks on the following documents:

d4: http://www.visitlondon.com/accommodation/

hotels/

d5: http://www.expedia.co.uk/daily/holidays/

packages.aspx?rfrr=-13006

The final Source Reputation Matrix is2:

wiki visitlondon expedia
london 1 2 2
hotel 0 1 1

1In the following table we use some shortcuts: th=theater,
mo=movie, en=entertainment, fl=flight, tr=travel
2In the following table we use some shortcuts:
wiki=en.wikipedia.org, visitlondon=www.visitlondon.com,
and expedia=www.expedia.co.uk

As for the previous matrix P , also the structure of R al-
lows the identification of relevant multi-terms query sources
through the application of the AND operator on the involved
query terms rows. Thus en.wikipedia.org is not a relevant
source for the query “London hotels” because the AND be-
tween 1 (for the corresponding “london” row) and 0 (for the
corresponding “hotel” row) returns 0. Together with the
matrix we retain a value called MAX R devoted to store
the maximum number contained in the matrix R. This is
useful for normalization purposes.

4.3 Source Annotation matrix
The Source Annotation matrix A is constructed as the

multiplication between the data in the User Profile matrix P
and the data in the Source Reputation matrix S, such asA =
PT ×S. In this way, the source annotation matrix is used to
create a relation between the web sources and the semantic
domains. In fact, the matrix represents the function A :
{sdj , wsk} → wjk, which assigns to each semantic domain
sdj and each web source wsk a weight wjk that indicates
how much a semantic domain is relevant with respect to a
web sources. The matrix is represented as:

ws1 . . . wsk

sd1

. . . wjk

sdm

Let us consider the two examples presented in the previous
sections. The resulting Source Annotation Matrix is:

wiki visitlondon expedia
theater 0,2 0,4 0,4
movie 0,3 0,6 0,6

entertainment 0,4 1,1 1,1
flight 0,4 1,2 1,2
travel 0,6 1,8 1,8

5. USER PROFILE CONSTRUCTION AND
MAINTENANCE

As already introduced in Section 3, the information we
consider in our personalization technique can be collected
and updated when:

• the user submits a query;

• the user chooses a certain cluster. We can deduce that
the set of semantic domains corresponding to that clus-
ter are of interest to the user, with respect to the query;

• the user chooses a certain document. We can deduce
that the web source of the document is considered re-
liable by the user w.r.t the query.

When the user submits a query, we use the historical data
to rank the results of the query and to suggest the user new
possibly interesting queries. On the other hand, when the
user performs some choices on the results of a query, we use
such information to update the historical data.

In the following we give a more detailed description of all
the operations we considered interesting for the user profile
construction and maintenance.



5.1 Query execution
The execution of a query happens in three different sce-

narios: (1) the user submits her/his query to the search en-
gine; (2) the user submits one of the possible disambiguated
queries built considering her/his profile; (3) the user sub-
mits one disambiguated query from the search results list
and has therefore submitted the new request.

The query is then first preprocessed by the engine which
means that all stop-words are removed and all terms are
stemmed. The result is the set of significant terms contained
in the query, Q = {qt1, qt2, . . . , qtn}. Each term is then used
to update the history matrices P and R. In particular, ∀
terms qti ∈ Q:

• if qti is already contained within the P matrix, its
frequency is increased by one and the corresponding
value of f is updated

• otherwise, it is added to it with f = 1

• if qti is not contained within the R matrix, it is neces-
sary to add a new line representing the new term

5.2 Choice of a cluster
The user chooses a particular cluster cj and explores the

documents contained in the cluster. In this scenario, the set
of semantics domains associated with the cluster is used to
update the User Profile matrix P . In particular, ∀ term qti ∈
Q, the semantic domains S = {sd1, sd2, . . . , sdm} associated
with the cluster cj , are eventually added as columns of P (if
they don’t already exist in it). Moreover, ∀wij ∈ P such as
i = 0, ..., n are indexes of query terms which originated the
selected cluster:

• if wij 6= 0 in P , its value is updated with the sdj weight
in the selected cluster, as described in 4.1.

• if wij = 0 in P , wij = sdj weight.

5.3 Choice of a document
The user chooses a specific document dh contained in a

cluster cl. In this scenario, the web source wdj of the docu-
ment is used to update the Source Reputation matrix R.

In particular, ∀ term qti ∈ Q:

• a corresponding row in the R table is created (if it is
not already present in the matrix)

• a column for web source wsj is added (if it is not al-
ready present in the matrix)

• the frequency fij is evaluated for the web source wsj .
In particular:

– if the web source is already contained in the set,
its frequency fij is added by 1.

– if the web source is not contained, it is added to
it with fij = 1.

Note that in this scenario the semantic domains associated
to the explored cluster are not taken into account. In fact
they were already stored when the user clicked on the cluster
label, looking for interesting documents.

In order to avoid the explosion of the dimensions of the
matrices and guarantee the scalability of the approach we
use classical techniques for efficient sparse matrices manage-
ment and cleaning techniques to delete not useful data.

6. RANKING OF THE RESULTS
Let us suppose the user submits a query. The result of

the query is a set of clustered documents which need to be
ranked before being presented to the user. In order to rank
the results, we access the historical matrices with the aim
of giving a higher rank to the information “similar” to the
previously browsed. Algorithm 1 shows how to rank the
clusters resulting from a web search given the user profile
matrix P , the set of clusters C and the query Q submitted
by the user.

Algorithm 1 Rank-Clusters (P,C,Q)

1: for all clusters cj ∈ C do
2: K={semantic domain sdk ∈ cj}
3: for all qt consider the set ROW of rows of matrix P

corresponding to the query terms
4: build the set COL of columns having only non zero

values in the cells in the rows in R
5: insert in SQ the terms corresponding to COL
6: X = {wsdij : sdij ∈ (K ∩ SQ)}
7: CW =

∑
X x

|K∩SQ|
8: Y = {wsdij : sdij ∈ SQ}
9: PW =

∑
Y y

|SQ|

10: P= CW+PW
2

11: new rank(cj)=(1-β)*original rank(cj)+β*P
12: Rank-Documents(cj , H,Q)
13: end for
14: OrderByRank(C)
15: return C

where β is the personalization factor. As in the work pro-
posed in [23] β is used to decide the weight of the personal-
ization in the computation of the rank varying from 0 to 1.
We allow the user to choose the value of β in order to decide
how much the desired results are to be near to her/his pro-
file. If β is 0, the ranking is the same as plain search. If β is
1.0, then the search rank is totally determined by the profile.
If β is 0.5, which is the default, the system considers equally
the importance of the two contributions. In this algorithm
CW (content weight) represents the weight of the semantic
domains in the cluster which are also contained in the user
profile w.r.t. the query. PW (profile weight) represents the
weight given to the semantic domains w.r.t. to the terms of
the query in the user profile.

7. PROFILE BASED QUERY DISAMBIGUA-
TION

In addition to the query expanded using terms derived
from clusters, we want to offer a set of user profile based
disambiguated queries. In particular we show a set of terms
taken from the semantic domains stored inside the user per-
sonal profile, highlighting them w.r.t. their frequency values
stored in the User Profile matrix. The user can select one
or more of these terms in order to build a new query that
is submitted to the search engine. The main difference be-
tween the query built considering terms taken from clusters
and the queries built using terms taken from the profile is
that the first queries propose new original contents that are
not correlated with the user’s preferences while the others
are closer to what the user usually searches while the others.



Algorithm 2 Rank-Documents (R, c,Q)

1: for all documents dk ∈ c do
2: for all qt consider the set ROW of rows of matrix R

corresponding to the query terms
3: build the set COL of columns having only non zero

values in the cells in the rows in R
4: insert in WSQ the terms corresponding to COL
5: wsk=web source(dk)
6: if wsk ∈WSQ then
7: assign to f the value in R corresponding to wsk and

qt
8: WP = f

MAX R
9: new rank(dk) = (1-β)*original rank(dk) + β*WP

10: end if
11: end for
12: OrderByRank(c)

8. CONCLUSIONS
In this paper we proposed a novel personalization tech-

nique based on the extraction of user-preferences informa-
tion from the clustering of the user web searches results.
The basic idea of the proposed approach is to store for each
user information about the preferred semantic domains Web
sources considered more reliable. The collected information
are used to build a user profile useful to re-rank the re-
sults in order to offer the higher positions the results with
a higher degree of semantic correlation with the user profile
and originating from the more reliable Web sources.
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ABSTRACT
The emergence of Web 2.0 has brought upon a plethora of database-
driven web applications and services where both Quality of Service
(QoS) and Quality of Data (QoD) are of paramount importance to
end users. In our previous work, we have proposed Quality Con-
tracts, a comprehensive framework for specifying multipledimen-
sions of QoS/QoD; we have also developed algorithms to maxi-
mize overall system performance under Quality Contracts. In this
work, we turn our attention to the user side of the equation, on
how to choose and adapt Quality Contracts to better serve users’
needs in the presence of other users, who are competing for the
same resources, in a virtual “economy” of Quality Contractsat the
server. Towards this, we propose the Adaptive Quality Contract
(AQC) scheme to maximize the success ratio of user queries. AQC
switches between its Overbid (aggressive) mode and Deposit(con-
servative) mode, to allow users to survive through economicdown-
turns and upturns. Extensive experiments with real traces show that
our proposed scheme outperforms other competing schemes, under
a variety of environments and a spectrum of workloads.

1. INTRODUCTION
How many times did you have to wait for your query to finish

executing when visiting a travel reservation web site like Orbitz
and Expedia? After getting the query results, how many timeswas
the quoted price proved to be inaccurate when you clicked “buy
this ticket”? This is just one example of a web-database system
that illustrates the trade-off between Quality of Service (QoS) and
Quality of Data (QoD). Clearly, some users would prefer fastre-
sponse time, while tolerating slightly stale results (e.g., when they
just want to find out about flight schedules). However, other users
would instead prefer to get the most accurate query results,even
if the response time was a bit higher (e.g., when they are ready to
purchase a ticket). There are a number of issues that need to be
addressed to implement a web-database system that is “receptive”
to user preferences on QoS and QoD. We enumerate these next.
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NSF ITR award ANI-0325353.
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Q1: How to describe user preferences?First and foremost, there
needs to be a way for users to specify their preferences on QoSand
QoD. One simple way would be to effectively assign users to equiv-
alence classes (i.e., prefers QoS over QoD, or prefers QoD over
QoS) and allow users to select which class they belong to. In our
previous work, we have proposed (and advocated using) a moreso-
phisticated framework, calledQuality Contracts(QCs) [6] which is
based on the micro-economic paradigm. The QC framework allows
users to specify their preferences across a variety of quality dimen-
sions. Similar proposals exist for other domains, such as the utility
functions in real-time systems [15] and the service level agreements
(SLAs) in Grid computing [3]1.

Q2: How are user preferences “implemented” to influence sys-
tem decisions?Given a framework for users to specify their prefer-
ences over different quality dimensions, it is crucial to have a way
to influence resource allocation decisions to maximize usersatis-
faction (i.e., compliance to user preferences). Towards this, we
have developed admission control policies [13] and query & up-
date scheduling algorithms [12] that maximize the overall system
profit (to be gained by the server from satisfying QCs) and thus
maximize the overall user satisfaction. The proposed algorithms
are especially useful during periods of high server load, since they
provide graceful service degradation.

In this work, we address another important problem that material-
izes aftersatisfactory solutions for questions Q1 and Q2 have been
provided.

Q3: How should users adapt their Quality Contracts in the
presence of competition?User preferences, if expressed through
the Quality Contracts framework, include a constraint component
(e.g., maximum acceptable data staleness) and a “worth” compo-
nent (i.e., virtual money) for every quality dimension of interest to
the user. In such an environment, always truthfully exposing the
“worth” of the queries will not allow users to react to high compe-
tition (i.e., by “paying” a bit more than expected) nor to take advan-
tage of reduced competition (i.e., by “paying” less than expected).
In general, we consider the Quality Contracts submitted by the dif-
ferent users (along with their queries) as acompetitive economy. As
such, it is crucial for users to be able to adapt these QCs overtime
(while trying to achieve query quality that meets their preferences).
In this paper, we propose user strategies to adapt QCs over time,
during economic downturns (i.e., when the competition is less) and
also during economic upturns (i.e., when the competition ishigher).

Contributions The main contributions of this paper are:

• Given an environment where user preferences over different
quality dimensions are expressed using Quality Contracts (QCs)

1We refer the reader to [6] for a detailed description of the QC
framework and comparison to other approaches.
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Figure 1: System Architecture

and are attached to queries, we look at the user viewpoint and,
in particular, the framework for adapting QCs over time and
the connection between a user’s true preferences and his or her
“exposed” QCs.

• We propose theAdaptive Quality Contract (AQC)strategy, which
monitors a user’s queries and the server’s responses and auto-
matically adapts the QCs of subsequent user-submitted queries.
AQC2 switches between two modes:Overbid mode, used at
times of fierce competition among users; andDeposit mode,
used at times of little competition.

We have demonstrated a QC-enabled web-database system dur-
ing SIGMOD 2007 [14]. Our demo illustrated both the server view
(for which the technical details were published in [12]) anda pre-
liminary version of the user view, which is presented in thispaper.
In addition to introducing the AQC strategy (not in [14]), this pa-
per explains its mathematical foundations, and presents a detailed
experimental study using real traces.

2. SYSTEM ARCHITECTURE
We assume a web-database server architecture like the one in

Figure 1. The system consists of two parts: the user module and the
web-database server. Before describing these two parts, wediscuss
the basic concepts behind the QC economy.

2.1 The Quality Contract (QC) Economy
Economic mechanisms can be broadly classified into two types:

commodity markets and auction markets [2]. Previous work has at-
tempted to solve the system resource allocation problem under both
paradigms. Under the commodity markets paradigm, commodities
are exchanged in standardized contracts. Servers (acting as sell-
ers) need to valuate their resources and assign prices for each unit.
Users (acting as buyers) then decide from whom they buy the ser-
vice to fulfill their queries. The shortcoming of commodity markets
is the complexity and high cost for a server to valuate its resources,
especially when the server workload fluctuates rapidly overtime.
To avoid this overhead at the server and make the valuation more
precise, many systems follow the auction markets paradigm [2, 9,
16, 8, 19], where users need to give a price and bid on the resources
or services provided by the server. Obviously, the uncertainty and
burden of valuation never disappear; they are simply shifted to the
user side. In this work, we adopt the auction markets paradigm.
However, as we will elaborate in Section 3, we propose an adaptive
bidding mechanism so that neither servers nor users have to worry
about exact valuation.

In our system, users are allocated virtual money, which they
spend in order to execute their queries according to their prefer-
ences; user preferences are described via QCs attached to each sub-

2AQC is pronounced AQuaC, which sounds like AFLAC; however,
we do not have a fancy mascot.

mitted query. Servers, on the other hand, execute users’ queries and
get virtual money in return for their service.

The virtual money is “paid” upon submission of a query to the
server as part of the bidding (i.e.,Qmax); any refund is given back
along with the query results (i.e.,Qmax− Qpaid). In our work, we
follow a hedonic price model [17]; goods (i.e., services in our case)
are priced by the users’ valuation of different characteristics (QoS
and QoD in our framework) and their contribution to users’ utility.
Towards this, we adopt the Quality Contracts (QC) frameworkas
shown in Figure 1 for service pricing (by the users). A QC consists
of aQoS function(where response time is mapped to QoS profit for
the server) and aQoD function(where staleness is mapped to QoD
profit for the server). The QoS and QoD metrics are application-
dependent and orthogonal to our work.

Although our framework allows for users to specify complicated
functions for QoS and QoD, in reality we expect users to simply
select from a set of predefined such functions, much like mostof
our other digital “products” with different levels of service (e.g.,
cell phone plans).

In the presence of QCs, users and servers have distinct objec-
tives: servers try to maximize their income, whereas users try to
“stretch” their budget to execute as many queries as they can.

2.2 Server View
The web-database server is responsible for processing bothup-

dates and queries in order to meet the service requirements speci-
fied in the QC of each query.

Server Objective: Maximize Profit. The server objective is
to maximize its profit, gained from each QC, through admission
control and scheduling.

Server Optimization Mechanism: There are two phases of server
optimization schemes: (1) admission control upon arrival of a query
or an update, and (2) transaction scheduling once admitted.In gen-
eral, the higher the bid, the higher the chance that a query isadmit-
ted and completed with high quality. Due to the space limitation,
please refer to [13, 12] for more details on these two phases.We
adopted Two Phase Locking - High Priority (2PL-HP) [1] where
the lower priority transaction releases the lock to the higher prior-
ity transaction at a conflict.

2.3 User View
The user aspect of the system must include an interface for users

to specify QCs and the ability to monitor the execution of QC-
enabled queries, while keeping track of the current budget.Al-
though the QC framework empowers users to influence resource
allocation decisions at the server (to better meet their preferences),
it also places the burden on the users to choose QCs (and adapt
them over time). We expect that users will employuser agents,
which will have explicit “instructions” from each user (on his/her
true preferences and budget constraints) and a QC adaptation strat-
egy.

Quality Contract / User Satisfaction: In this paper, we adopt
QCs with linearly decreasing positive functions [12]. Intuitively,
users can set the following four parameters to define a QC:

• qosmax, the maximum QoS profit,

• qodmax, the maximum QoD profit,

• rtmax, the maximum bearable response time, and

• uumax, the maximum bearable staleness.

In this work, we simplify our model with an equivalent presenta-
tion, where the first two parameters (qosmax and qodmax) are re-
placed by:



• Qmax: qosmax +qodmax, the maximum payment for the query.

• γ: qodmax
qosmax

, relative importance between QoS and QoD.
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Figure 2: User Satisfaction Functions Example

As discussed in the introduction section (question Q3), in spec-
ifying QCs, users may not want to reveal the true worth of their
queries (e.g., how much they can pay for a query result with a cer-
tain response time), although they would be willing to reveal their
constraints (i.e., would prefer an answer within 10 seconds). In
other words, the constraints in QCs are truthful, but the mapping to
the worth dimention may not be. Figure 2 shows a simple exam-
ple of what “truthful” user satisfaction functionsmight look like.
Under this setting, queries are considered acceptable as long as the
results meet the constraints on both QoS and QoD. Without loss of
generality, we adopt such binary-step user satisfaction functions in
this paper.

Following the example of Figure 2, we define two outcomes for
a query for the general case:

• Success:A query succeeds if it is returned with valuable an-
swers, meaning that the response time is shorter than the QoS
constraint,rtmax, and the staleness is smaller than the QoD con-
straint,uumax. Successful queries give to the server a nonzero
payment,Qpaid > 0. The actual value ofQpaid depends on
how well the server executes the query, given the QC. In terms
of the user satisfaction functions, a successful query yields 1
from the product of all user satisfaction functions of the query
(i.e., across all quality dimensions).

• Failure: If a query fails either the QoS or the QoD constraint,
we call the query afailure, andQpaid = 0. This allows the user
to also infer the data freshness of the returned results.

User Objective: Success Ratio Maximization.The users’ goal
is to adapt Quality Contracts (e.g., by changingQmax) to get as
many as possible of his/her queries executed successfully,within
the given total budget.

2.4 Analysis of Existing QC Adaptation Schemes
Assuming a user withN queries to submit and a total budget

B, we consider three baseline strategies, which computeQ
(i)
max, the

total bid for the QC of queryi, as follows:

• Fixed (FIX): Q
(i)
max = B

N
. FIX is a static policy, which assigns

each query an equal share of the total budget.

• Random (RAN): Q
(i)
max =uniform[ B

N
− c, B

N
+ c], wherec is a

constant. This strategy usesB
N

as the mean, and[ B
N
−c, B

N
+c]

as the range to pickQmax uniformly.

• Dynamic (DYN): Q
(i)
max = Bi

N−i
. This scheme monitors the

current budget leftBi and the number of queries leftN − i

before queryi is issued.

Problems with existing schemes: FIX does not make full use
of the budget, because it ignores the refunds from the previous
failed queries. The RAN scheme is similarly problematic. DYN
addresses the issue of ignored refunds by dynamically updating the
available budget. However, DYN favors the queries issued later
than earlier and creates an unfair allocation of the total budget.

3. ADAPTIVE QUALITY CONTRACT (AQC)
In this section, we present our proposedAdaptive Quality Con-

tract Scheme (AQC), which addresses the problems and limitations
of the baseline algorithms that were presented in the previous sec-
tion. Our AQC scheme switches between two modes:Overbid
mode(Section 3.1) andDeposit mode(Section 3.2); we discuss
how AQC chooses between the two modes in Section 3.3.

3.1 Overbid Mode
As we have shown, DYN unfairly “favors” later queries by mono-

tonically increasingQmax as time progresses using the cumulative
refunds from previously finished queries. This behavior is roughly
equivalent to last-minute spending by companies at the end of a
fiscal year, since at that time, any of the remaining money in the
current year’s budget will effectively disappear unless spent imme-
diately.

The Overbid mode of AQC addresses this problem by setting
the budget of the submitted quality contracts for each queryto be
such that theexpected payments sum up to the overall budget. In
contrast, the DYN scheme sets the bid per query to be such thatthe
individual bids sum up to the total budget (which clearly results in
under-utilization of the budget, until the last minute).

In order to make the expected payments sum up to the overall
budget, we need to make sure that the expected payments for the
ith query sum up to its fair share of the budget:

Ep[Q
(i)

paid(x, y)] = budget per query=
Bi

N − i
(1)

Then, in order to find how to set the QC for the query, we have to
essentially expressQpaid in terms ofQmax, and solve Equation 1
for Qmax. Qpaid depends on the QoS functionS, QoD function
D, and how well the server returns the query (response timex and
stalenessy). Thus, as we show next, the expectation ofQpaid over
the probability distribution of response time (x) and staleness (y)
can be expanded as the sum of expected expenditure from the QoS
function and from the QoD function respectively:

Ep[Q
(i)

paid(x, y)] = Ep[S(x)] + Ep[D(y)] (2)

If we combine Equation 1 with Equation 2, we have that:

Ep[S(x)] + Ep[D(y)] =
Bi

N − i
(3)

In this work, we adopt linear segmented QCs where the QoS
function can be represented as in Equation 4 and the QoD function
can be represented as in Equation 5. If other formats of QC func-
tions are adopted, Equation 4 and Equation 5 should be modified
accordingly.

S(x) =



qosmax(1 −
x

rtmax
) if x ∈ [0, rtmax]

0 otherwise
(4)

D(y) =



qodmax(1 −
y

uumax
) if y ∈ [0, uumax]

0 otherwise
(5)

We compute the expectation of QoS profit using empirical expec-
tation, as shown in Equation 6.

Ep[S(x)] =

Z

S(x)p(x)dx

= qosmax

Z rtmax

0

p(x)dx −
qosmax

rtmax

Z rtmax

0

xp(x)dx

≈ qosmax(P(x < rtmax) −
x̄

rtmax
) (6)



where P(x < rtmax) is the percentage of cases that the response
time of the user query is smaller than its response time constraint
rtmax, and x̄ is the average response time. Both P(x < rtmax)
and x̄ can be computed based on the query execution history. We
introduceα to denote this part of computation and summarize the
expected QoS profit as follows:

Ep[S(x)] ≈ qosmax · α (7)

α = P(x < rtmax) −
x̄

rtmax

Similarly, we compute the expectation of QoD profit:

Ep[D(y)] ≈ qodmax · β (8)

β = P(y < uumax) −
ȳ

uumax

As described in Equation 3, the total expected profit from both QoS
(Equation 7) and QoD (Equation 8) should be set to the current
budget per queryBi

N−i
:

qosmax · α + qodmax · β =
Bi

N − i
(9)

whereα andβ are computed based on query execution history (as
shown in Equation 7 and Equation 8). Since the ratio between
qosmax andqodmax is known asγ, we have:

Qmax = qosmax+ qodmax

qodmax = γ · qosmax (10)

We solve Equations 9 and 10 to get the final solution ofQmax:

Q
(i)
max =

Bi

N − i
·

1

α + γ · β
(11)

In the above solution, 1
α+γ·β

is essentially the overbid factor.

3.2 Deposit Mode
Although Overbid mode successfully utilizes as much of the bud-

get as possible (and in a fair manner across all queries), it will not
detect the cases of “overpayment” because of the server having a
light load. In such cases, there is not much “competition” from
other users, and as such the user could have paid less than what
Overbid mode would suggest.

The benefit of detecting these cases comes from the inherent dy-
namic nature of typical web-database servers. The load at such
servers can fluctuate fromvery high(e.g., in periods of flash crowds),
where queries would require a high budget or they will not be able
to execute, to relativelylow, where queries would require a much
less budget than usual to execute.

In order to make sure that the AQC scheme can successfully react
to the inherent dynamic nature of web-database servers, we intro-
duce a budget saving scheme which we callDeposit mode. The
main idea behind Deposit mode is to recognize cases when users
can spend less of their budget (because of a less competitivesitu-
ation), so that they are ready to spend more when facing stronger
competition from other users.

To implement Deposit mode, theQmax is reduced when there is
a row of consecutive successful query executions. LetQ

(s)
max, Q

(s)

paid
be the budget and the payment for the most recent successful query.
We set the newQ(i)

max in Deposit mode as follows:

Q
(i)
max = Q

(s)
max · (1 −

Q
(s)

paid

Q
(s)
max

) (12)

We call the ratio of
Q

(s)

paid

Q
(s)
max

as thedeposit factor. Notice that the

closerQ(s)

paid is to Q
(s)
max, the bigger the deposit factor is. The in-

tuition is that we could deposit more and bid less when historical
success comes with very good performance (a highQ

(s)

paid usually
corresponds to high QoS and high QoD). A high deposit factor thus
may indicate that the system is currently lightly loaded. Although
a lower bid will decrease the priority of the query, hopefully in a
lightly loaded server, the query can still be answered within con-
straints. On the contrary, if the last successful query barely meets
the QoS and QoD constraints, the deposit factor will be closeto
zero and the query will be kept with a competitive bid.

3.3 Switching between Deposit and Overbid
At the beginning, the system is set to the overbid mode by de-

fault. AQC keeps track of the number of consecutive query suc-
cesses (successQ.size) and uses it to decide the current system
mode.

If the number of successes is significantly large (i.e., larger than
a thresholdc), the system is set to deposit mode. This is because
a consecutive successful query history indicates a less competitive
environment or a lightly loaded web-database server, thus the bid
can potentially be decreased without hurting the success ratio.

Notice thatsuccessQ.size only includes those queries that are
completed within the time windoww. Thus,successQ.size may
decrease due to two reasons: (1) there are no more queries to be
completed (i.e., neither query success nor query failure),as a re-
sult, successQ.size decreases as the moving windoww moves
on. If successQ.size drops belowc, the system mode will be set
to overbid because of the lack of successful feedbacks; (2) there is a
query failure, which will resetsuccessQ.size to zero immediately.
In both cases, system mode is set to overbid promptly to utilize the
user’s budget as much as possible so that the server is motivated to
execute the users queries with higher priorities.

By switching between the overbid and deposit modes according
to the query success/failure, the AQC scheme naturally follows the
law of supply and demand. We expect the overhead of adaptation
to be linear to the total number of queries processed.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
We have acquired access traces from a popular stock market in-

formation web site, Quote.com, and combined them with the NYSE
(New York Stock Exchange) update traces for the same time pe-
riod, which enabled us to accurately generate both query andup-
date workloads for our experiments.
Query Traces We use real queries from Quote.com for April 24,
2000. All queries are read-only. We concentrated on a “heavy”
workload for the server, a 30-minute (10:30am-11:00am) interval
with over 120,000 queries on 4,107 different stock symbols.
Update Traces We extracted the actual trades on all securities
listed on NYSE during the same time interval as our query trace
(10:30am-11:00am on April 24, 2000). The update trace shares
the same indexing scheme with the query trace. The update trace
fragment we used has over 396,000 entries.
Comparison Algorithms To evaluate our proposed QC adapta-
tion strategy, we performed an extensive simulation study using the
FIX, RAN, DYN schemes (Section 2.4) and our proposed proposed
AQC strategy (Section 3).

Each query is submitted to the system along with a user-specified
QC; each user also has an initial budget, which for simplicity is
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Figure 3: Duet Over time

equal among all users.

4.2 Performance Comparison
For a fair comparison, we present results from two differentexe-

cution runs: duet and quartet. In duet, each run contains twoclasses
of users (i.e. two algorithms), creating a one-to-one confrontation
to show directly which algorithm performs better. In quartet, we put
all four algorithms into the run, where they all interact andcompete
with each other.
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Figure 4: Duet Environment: AQC vs. Baseline Algorithms.
AQC outperforms baseline algorithms by up to 183%.

4.2.1 Duet
Experiment Design (Figure 4) We compare AQC with each base-
line algorithm individually to eliminate unnecessary interactions
from multiple algorithms. We performed three runs: (FIX, AQC),
(RAN, AQC), and (DYN, AQC). Each query from the trace is ran-
domly associated with one of the two algorithms in the experiment.
Results (Figure 4) We run each trace 20 times and report the aver-
age query success ratio for the three comparisons in Figure 4. The
performance difference is quite obvious: AQC users perform183%
better than FIX, almost 100% better than RAN, and more than 30%
better than DYN.
Results Over Time(Figure 3) Given that the four algorithms have
different behavior over time, we also plot the bidQmax and the
money paidQpaid for each query as well as the query success ratio
with a 2-minute window over time.

In Figure 3(a), FIX gives a constant bid ($10) for each query.
Due to the unavoidable CPU time and unpredictable queuing time,
the real expenditure is only around $2 on average. Failing toreuse
the refund leaves FIX with a small success ratio shown in Fig-
ure 3(b). RAN has similar results as shown in Figure 3(c) and

(d). Qmax varies around $10 andQpaid is around $4 on average.
With more than half the budget wasted, RAN gains less than 50%
success ratio over time.

In Figure 3(e), we see that DYN dynamically adjusts the current
available budget and increasesQmax over time. As a result, DYN’s
success ratio increases over time too, as shown in Figure 3(f). How-
ever, DYN is still conservative on early issued queries, which not
only jeopardizes the fairness of queries coming at different times,
but also hurts its overall success ratio.

Finally, Figure 3(g) and (h) show AQC’s improvement from two
sides. First, the averageQpaid is around $10, thus the budget is
fully used to increase the quality of query results. AQC is able
to setQmax higher than $10 because of foreseeing the expected
expenditure. Second, AQC tries to save money after consecutive
successes, so that it can bid higher to survive a tougher situation
later. This is why we see a few downward trends in Figure 3(g).
Both aspects help AQC achieve significantly better results when it
competes with other algorithms.

4.2.2 Quartet
Experiment Design (Figure 5) Having compared the different
baseline algorithms (FIX, RAN, DYN) to our proposed algorithm
(AQC), we mix the four user algorithms in the same execution run;
each class of users has 30,000 queries with a meanQmaxof $10. In
this set of experiments, we focus on (1) varying quality constraints
(Figure 5(a)), and (2) showing both the user view and the server
view (Figure 5(b)).
Results (Figure 5(a))We change the user constraints on QoS to be
tight, medium, and loose to generate three traces, High, Medium,
and Low workload respectively. As expected, for all algorithms,
the success ratio is higher with Low system workload (which has
loose quality constraints). In comparison to other algorithms, AQC
performs the best under the whole spectrum of workloads. Another
observation is that a high system workload also exaggeratesthe per-
formance differences among the algorithms. Under high workload,
AQC outperforms FIX by 233%. AQC also achieves 155% better
performance than RAN and 28% better than DYN.
Results (Figure 5(b)) In addition to the users’ view of these al-
gorithms, we also show the server profit gains from each user al-
gorithm under the medium workload. We observed similar trends
with both the high and the low workload. Figure 5(b) shows that
the server stands to gain much more profit from DYN and AQC,
thus tends to serve them better than FIX and RAN. Making full use
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Figure 5: Quartet Environment: 4 algorithms under differen t workload settings.

of the budget is a win-win strategy from both users’ and server’s
point of view.

To summarize, AQC not only gives the best success ratio under
various workloads, but also makes the users most popular from a
system’s point of view, as the system can make much more profit
from users utilizing AQC.

5. RELATED WORK
Web-databasesThere is a plethora of papers that focus on im-

proving the performance of user requests to database-driven web
sites, using caching [4, 11] or materialization [7]. These approaches
usually provide a best-effort solution in terms of either QoS or
QoD. In our recent work [6], we introduced the Quality Contract
framework to combine individual users’ preferences for both QoS
and QoD. We demonstrated the QC framework in [14], in combi-
nation with our policies for admission control [13], and query &
update scheduling [12]. Our demo also highlighted the benefits of
user-side adaptation of QCs (although we did not provide theAQC
scheme, as we do in this paper).

Grids and Web ServicesService Level Agreements (SLAs) in
Grid applications [3] is another related area. In SLAs, resource
availability, capability, and cost are considered for effective re-
source management. SLAs also exist for Web-services [10, 18,
20]. Although sharing the general goal of resource regulation and
cost controlling, our work focuses on one specific resources: web-
databases.

6. CONCLUSIONS
In previous work we have proposed the Quality Contracts (QCs)

framework, and introduced the supporting system optimizations.
In this work, we turn our attention to the user side of the equa-
tion and consideruser strategies to adapt Quality Contracts over
time. Towards this, we proposed the Adaptive Quality Contract
(AQC) strategy, which monitors a user’s queries and the server’s re-
sponses in order to automatically adapt the QCs of subsequent user-
submitted queries. We performed an extensive simulation study
with real traces, which showed that AQC consistently outperforms
baseline algorithms (by up to 233%).

Currently, we are exploring strategy-proof mechanisms forthe
bidding process and are considering how other schedulers (e.g., [5])
could be adapted to “understand” Quality Contracts.
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ABSTRACT
Recommender systems are efficient tools that overcome the
information overload problem by providing users with the
most relevant contents. This is generally done through user’s
preferences/ratings acquired from log files of his former ses-
sions. Besides these preferences, taking into account the
interaction context of the user will improve the relevancy
of recommendation process. In this paper, we propose a
context-aware recommender system based on both user pro-
file and context. The approach we present is based on a
previous work on data personalization which leads to the
definition of a Personalized Access Model that provides a
set of personalization services. We show how these services
can be deployed in order to provide advanced context-aware
recommender systems.

1. INTRODUCTION
The last decade met a remarkable proliferation of P2P

networks, PDMS, semantic web, communitarian websites,
electronic stores, etc. resulting in an overload of available
information. Current information systems deal with a huge
amount of content, and deliver in consequence a high num-
ber of results in response to user queries. Thus, users are not
able to distinguish relevant contents from secondary ones.

Recommender systems (RS) are efficient tools designed
to overcome the information overload problem by provid-
ing users with the most relevant content [8]. Recommen-
dations are computed by predicting user’s ratings on some
contents. Rating predictions are usually based on a user
profiling model that summarizes former user’s behaviour.

The importance of RS is now well established. Netflix
organizes a contest 1 in which one million dollar is offered
for any better recommendation engine. This contest shows,
in one hand, the importance that industrials give to RS, and
in another hand that better recommendations worth a lot.

1http://www.netflixprize.com
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Two important questions arise from the Netflix contest: (i)
What is a better RS? And (ii) How can a system provide
the best recommendations?

In our vision, a better RS is the one which delivers recom-
mendations that best match with users’ preferences, needs
and hopes at the right moment, in the right place and on
the right media. This can’t be achieved without designing
a RS that takes into account all information and parame-
ters that influence user’s ratings. These information may
concern demographic data, preferences about user’s domain
of interest, quality and delivery requirements as well as the
time of the interaction, the location, the media, the cogni-
tive status of the user and his availability. This knowledge
is organized into the two concepts of user profile and con-
text. The user profile groups information that characterizes
the user himself while the context encompasses a set of fea-
tures which describe the environment within which the user
interacts with the system.

We claim that taking into account both profiles and con-
texts in a recommendation process benefits to any RS for
many reasons: (i.) Users’ preferences/ratings change accord-
ing to their contexts [5, 12]. (ii.) The additive nature of
traditional RS [6] does not consider multiple ratings of the
same content. (iii.) RS may fail in providing some valuable
recommendations as their similarity distance is uniformly
applied to user preferences without analyzing the discrep-
ancies introduced by the context.

In [2], we proposed a Personalized Access Model (PAM),
a framework that provides a set of personalization concepts
and services, generic enough to be applied to a large variety
of applications. Based on the PAM, and following the efforts
started by Adomavicius et al. [3, 4] and Anand et al. [6],
we propose a Context-Aware Recommender System (CARS)
which is based on both user profiles and contexts. In our
approach the same user who interacts from different contexts
is provided with different recommendations.

Our main contributions include the following: (i.) We
present a general architecture for context-aware RS based on
a set of personalization services. (ii.) We extend the PAM
with a new context learning service that enables concrete
construction of users’ contexts from their log files. (iii.)
The contextualization service proposed in [1] is improved by
combining both support and confidence of ratings within a
given context instead of considering their frequencies only.
Notice that this paper reports a conceptualization effort for
integrating context into RS. The evaluation of CARS ap-
proach is under study.
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This paper is organized as follow: Section 2 presents a
high level architecture of CARS and poses the main require-
ments that CARS should satisfy. Section 3 recalls concepts
and services provided by the PAM. Sections 4 and 5 focus
on the services applied to CARS. Section 6 provides a global
view on CARS deployment using PAM services. Section 7
summarizes related works. Section 8 concludes the paper
with further research.

2. REQUIREMENTS FOR CARS
We focus on RS which combine content-based techniques

and Collabotrative Filtering (CF). The content-based ap-
proach permits to learn users’ profiles by analyzing content
descriptors. Resulting profiles are, then, matched and com-
pared to determine similar users in order to make collabora-
tive recommendations. The CF approach allows exploiting
the ratings given by the Top K neighbors of the active user
in order to derive the missing rating by aggregation function.
Figure 1 gives a flavour of the CARS global architecture.

Figure 1: Global architecture of context-aware RS

This architecture is composed of: the left-upper block
which concerns knowledge acquisition and the right-bottom
block which concerns personalized recommendation.

Knowledge acquisition processes: This block is responsi-
ble for the acquisition and the management of knowledge a
CARS needs to process recommendations. This knowledge
is grouped into three entities: user profiles, content descrip-
tors, and contexts. We focus in this paper on: (i) context
acquisition from log files, and (ii) discovery of relationships
between these contexts and user profiles elements (called
contextual profiles).

Personalized recommendation: This block encompasses
actual RS operations. The recommender engine (RE) takes
as inputs (i) contextual profiles generated in the knowledge
acquisition block and (ii) the current context of the target
user to compute a list of contextual recommendations. The
behaviour of the target user when consuming these recom-
mendations is stored in log files on which acquisition pro-
cesses are based to update profiles, contexts and their map-
pings; hence, closing the cycle between knowledge acquisi-
tion and their exploitation.

The design of such CARS is driven by the following re-
quirements:

1. Distinguish profiles from contexts for a well-understood
definition and evolution of both entities.

2. Enable contexts discovery through a concrete approach
and a widely available data (standard log files).

3. Consider both profiles and contexts into recommenda-
tion such that a user interacting from different contexts

would be provided with appropriate recommendations.

As a consequence of the separation of profile and context,
applications may be only aware on profiles or contexts or on
both. The next section details a service-oriented approach
for designing CARS that satisfy above requirements.

3. OVERVIEW OF PAM CONCEPTS AND
SERVICES

Our CARS proposal is based on a former work [2] in which
we defined a Personalized Access Model (PAM) that pro-
vides a set of personalization services. The PAM aims at
providing a generic set of concepts and services which can
be deployed over a given architecture to make applications
aware of users’ profiles and contexts.

The components of the PAM are built around profile and
context meta models which are adaptable to a wide range of
applications and which are open to integrate specific knowl-
edge not included initially. Profile and context meta models
are organized into dimensions and sub dimensions which are
described by (attribute, value) couples.

3.1 Main Concepts
This section provides an informal definition of the con-

cepts that will be used in the following sections.
User profile. Provides an extensive definition of the pref-

erences that a user has in a given domain of interest. It is a
set of (attribute,value) couples rated by the user or the RS
on the basis of user’s actions.

Active User. In RS, an active user is the one for whom
recommendations are calculated.

Context. Set of features characterizing the environment
within which users interact with RS.

Active context. It is the context within which the active
user interacts with RS. It is also called current context.

Contextualized profile. It’s a set of mappings that
relate a subset of profile preferences to the context in which
they are defined.

Operational profile. It’s a runtime binding of a contex-
tualized profile to the current context of the user.

3.2 PAM Services
The PAM provides several services which have been pro-

gressively extended, following application requirements [2].
Among these services, we distinguish offline (Contextual-
ization, Context discovery) and online services (Binding,
Matching). The former set is used at the design time of
a personalized application, while the latter is used at the
execution time. We list hereafter those which are worth to
be used in personalized RS.

Context discovery service. Discovers, for each user, regu-
lar contexts within which he interacts with RS (e.g. Holiday
context, Office context).

Contextualization Service. Aims at identifying mappings
between user ratings and contexts in which these ratings
were defined. Mappings are of the form (Ri, cj , sij), where
Ri = Itemi × ri, and sij represents the importance of the
rating ri over itemi within the context cj .

Binding Service. Exploits the mappings generated by the
contextualization service to derive the operational profile.

Matching Services Allow capturing the semantic similarity
between two concepts. The similarity value takes into ac-
count the structure of compared concepts, user ratings and
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ontologies with which items can be described. We distin-
guish four matching services [2]: profile/profile, context/context,
item/item, and profile/item. Due to space limitation, match-
ing services are not develloped in this paper.

4. OFFLINE SERVICES
This section details the two services that acquire the nec-

essary knowledge to efficiently run the CARS. These services
are an answer to the first two requirements imposed in sec-
tion 2. For each service, we give its definition, its deployment
on CARS, and details on its operational semantics.

4.1 Context Discovery Service

4.1.1 Service definition
The goal of the context discovery service is to learn from

user log files, the most recurrent contexts (situations) within
which the user interacts in general.

C : Context Discovery(α,L) (1)

The context discovery service takes as input the user log file
(L) tracked from former recommendations and returns a set
of regular contexts C within which a user, whose profile is
Pu, interacts with the personalized application.

4.1.2 Service deployment on CARS
The approach we propose to discover contexts is based on

the analysis of logs to capture regular contexts. Hereafter,
a motivating example is given to understand the approach.

Example. Assume that a user, John, interacts frequently
with RS. Then, thanks to information contained in his log
files, the system can capture that John’s interests (activi-
ties) change according to the IP address, the date and time,
the device, etc. This can be pointed by a lookup to his log
file from where two contexts can be derived: office context
during working days and home context during weekends.
John / IP 192.168.53.25 /May 4 17h:00 /winXP,En,Firefox5.0
John / IP 192.168.53.25 /May 5 17h:30 /winXP,En,Firefox5.0
John / IP 192.168.53.25 /May 4 17h:33 /winXP,En,Firefox5.0
. . .
John / IP 192.168.70.1 /May 9 12h:00 /MacOS X,En,Safari
John / IP 192.168.70.1 /May 9 20h:00 /MacOS X,En,Safari

Obviously, the content to be recommended change accord-
ing to John’s context (e.g. scientific papers for office con-
text and movies for home context). Context discovery from
logs assumes the manipulation of well structured log file.
Hopefully, the analysis of the most known log file formats
such as Apache CLF, IIS LF and W3C LF [11] reveals that
most of them already contain contextual information (fields)
that correspond to the context meta model proposed in [2].
Among these fields there are, for example, the IP Address,
the DATE of the request, and the USER-AGENT (browser,
OS, . . . ).

4.1.3 Log File Format
The log file format we used is based on the W3C log file

format [11] which is enough extensible (thanks to ten W3C
General Purpose Fields) to adapt it to various applications.
field: Date T ime c− ip c− dns c− auth− id cs−method cs −
uri− stem cs−uri− query cs(UserAgent) sessionId c−Action

c −Device. Notice that this log file format defines two new
fields only which are c − action, and c − device. The first
one is well known in application server log files, it contains
usually the id of the action (e.g. Buy) that user applies to

Figure 2: Log file

a given content. The second field informs about the device
used (e.g. Laptop, a mobile phone, a remote control, etc.).

Among the log file format fields, five are contextual:
Date : the domain of date is organized into a hierarchy,

in such a manner that we can know if it is a working day or
a weekend, holiday or not, etc.
T ime : a day is partitioned into periods which are orga-

nized into a hierarchy. The time can inform about the day
period: day, night, morning, afternoon, etc.
c − ip : The IP address in used to localize the user, the

localities are organized into a hierarchy of continent, region,
country, city, town, etc.
cs(UserAgent) : gives information about the user Browser

and OS (operating system) further than their languages.
c − Device : characterizes the used device for the user

interaction, devices can be segmented into a hierarchy.
Conjunction of these attribute represent contexts within

which users interacts with the RS. We propose to group
these contexts into clusters, each representing a regular con-
text or situation such as home, labs, etc.

4.1.4 Context Discovery Algorithm
Log files are transformed and uploaded into a database

relation having the schema of figure 2. Based on this ta-
ble, contexts are discovered by mining the five contextual
attributes given above.

Let a context tuple be a conjunction of the five contextual
attributes which corresponds to one row (see figure 2).

The idea is to cluster the set of all tuples into a finite
set of clusters, each cluster representing a particular regu-
lar context. Thus, we start by applying the Agglomerative
Hierarchical Clustering (AHC) [10] in order to estimate the
number of clusters k, then, we apply the k-means algorithm
with the k center of resulting clusters in AHC algorithm
instead of choosing arbitrarily the initial k centers.

Algorithm 1 starts by extracting context instances from
the user log file. In line 3, AHC is applied on these instances
in order to compute the initial k clusters. Then, from lines 4
to 13, k-means is applied as an iterative relocation algorithm
in order to improve the initial clustering obtained with AHC.
The algorithm iterates until Squared Error E achieves its
minimal value.

4.2 Contextualization Service

4.2.1 Service definition
The main idea of the contextualization is to check whether

there are correlations between the user profile elements and
the user feedback within a given context.

M(Pu, C) : Contextualization(Pu, H) (2)

Contextualization process takes as input a user profile Pu

and the user history H corresponding to the user feedback
in contexts C discovered previously. It returns a set of con-
textual mappings M representing dependencies between el-
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Algorithm 1 Automatic Contexts Discovery

Input: the user log file L, the threshold α.
Output: the set of user contexts C = {c1, . . . , cm},
1: C ← ∅, E :=∞
2: CI ← CONTEXT (L) {extract context instances}
3: C ← AHC(CI, α) {apply Agglomerative Hierarchical

Clustering on CI. α a stopping threshold}
4: for all cluster ci ∈ C do
5: update its mean mi := NewMean(ci)
6: repeat
7: Eold := E
8: for all context instance tj ∈ CI do
9: assign tj to its closest cluster c∗ ∈ C such that ∀ci ∈

C,MATCH(tj , ci) ≤MATCH(tj , c
∗)

10: for all cluster ci ∈ C do
11: update its mean mi ← NewMean(ci)

12: compute E :=
∑k

i=1

∑
t∈ci
|MATCH(t,mi)|2

13: until E ≥ Eold

14: return C

ements in Pu and contexts in C.

4.2.2 Contextual profile
In traditional RS, a user profile is a set of ratings Pu =
{R1, . . . , Rn}, where each rating Ri is composed of a predi-
cate pri and a rate (weight) ri, i.e. Ri = (pri, ri). The rate
ri is a real number expressing the importance of the predi-
cate pri for the user. pri is a triplet< concept, operator, value >,
e.g. Genre = ’Drama’. Concepts may be items (content)
that a user consumed, features of these items or both of
them.

Based on this profile, a contextualized user profile CPu

is defined as a set M of contextual mappings which relates
user ratings to a set of contexts C:

CPu = {mij (Ri, cj , sij) |Ri ∈ Pu, cj ∈ C, sij ∈ [−1, 1]}

Each contextual mapping mij is defined by a rating Ri,
a context cj and a score sij . The score sij is a real number
expressing the importance of taking into account the Rating
Ri when the user interacts from the context cj . Hereafter,
we describe the way a contextual user profile is constructed
using log files.

4.2.3 Service deployment on CARS
The user history H on which the contextualization service

is based, is obtained by transforming the user log file L
(figure 2). A sample of this history is presented in figure 3.

Figure 3: a sample of user history H

User behaviour is captured in a relational table where
each row is of the form: <id, Context id, Content id,

Feature, Action type> expressing that a user consumed a
content (item) having some features (predicates) in a specific
way (Action type) within a given context (context id).
Action type specifies whether the action applied by a user

when consuming the content is positive (e.g. Buy) or neg-
ative (e.g. Ignore). Content id and Features are obtained
by transforming the URI of the consumed content (which
is a log file field) into more significant information (e.g.
http://www.imdb.com/title/tt0448157/ becomes Title: Han-
cock, Genre:Action, Comedy, Crime). Context id specifies
the context cluster within which the content was consumed;
it is computed by the context discovery service.

4.2.4 Contextualization Algorithm
The algorithm of contextual profile construction captures

for each user rating (more precisely, predicate), its impor-
tance in each user context. Notice that, in each context, user
activities may be of two kinds: positive (belongs to liked
contents) and/or negative (relative to disliked contents), ac-
cording to the type of actions a user applied on contents.
Therefore the importance of each predicate must be cap-
tured in both positive and negative activities. As presented
in [1], the importance of a predicate pri within a context cj is
captured by computing its frequency in this context. How-
ever, we claim that the frequency does not reflect the real
importance of a predicate for one user. Thus, we propose
to model the importance of each predicate pri for the pos-
itive (resp. negative) activity within a given context as an
association rules of the form 〈pri → +〉 (resp. 〈pri → −〉).
Then, the importance of pri is obtained by combining both
the support (sp) and the confidence (cf) of its corresponding
rules.

Many approaches can be used as merging function, we
mention hereafter one possible way that consists in measur-
ing the conviction of the rule.

conv(pri → ∗) =
1− sp(∗)

1− cf(pri → ∗)
(3)

Where ∗ takes one value among {+,−} at a time.
Algorithm 2 shows the way contextual profiles are con-

structed based user’s interaction histories.

Algorithm 2 Automatic contextual mappings discovery

Input: the initial user profile Pu = {p1, . . . , pn}, the user
behavior H.

Output: the contextualized user profile CPu

1: CPu ← ∅, cf := 0, sp := 0
2: C ← CONTEXT (H)
3: for all Ri ∈ Pu do
4: for all cj ∈ C do
5: compute cf+ := confidence(pri → +, cj ,H′)
6: compute sp+ := support(pri → +, cj ,H′)
7: compute s+ij := merge(cf+, sp+)

8: if s+ij ≥ γ then

9: CPu ← CPu ∪ (Ri, cj , s
+
ij)

10: compute cf− := confidence(pri → −, cj ,H′)
11: compute sp− := support(pri → −, cj ,H′)
12: compute s−ij := merge(cf−, sp−)

13: if s−ij ≥ γ then

14: CPu ← CPu ∪ (Ri, cj ,−s−ij)
15: return CPu

The contextual profile constructed in algorithm 2 allows
positioning each profile rating in each context through a
score. The next section discusses the manner this score is
exploited to make contextual recommendations.
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5. ONLINE SERVICE: BINDING
This section details a runtime service that constitutes an

answer to the last requirement imposed in section 2.

5.1 Service definition
The binding consists in identifying, at a runtime, user

profile parts which are related to a given context.

OPu : Binding(CPu, ci) (4)

The profile binding takes as input the contextual user profile
CPu and the active context of the user ci. It returns an
operational profile OPu which contains only profile elements
which have to be considered by applications within ci.

5.2 Service deployment on CARS
The Operational Profile is produced by filtering user rat-

ings which aren’t relevant to the active context, and by com-
bining the remaining user ratings with contextual mapping
scores.

Operational profile is always related to one context ca (ac-
tive context), it can be defined as being a set of contextual
ratings (and not mappings): OPu = {CR11, . . . , CRnk}.
Each contextual rating is of the form: CR =< pri, w >,
and is derived from a contextual mapping mia(Ri, ca, sia)
with Ri = pri × ri. Notice that w = aggregate(ri, sia)
is the weight (contextual rating) of the predicate pri (e.g.
itemi) within the context ca.

The two reals ri and sia have particular semantics. In
fact, ri represents the absolute importance of a given pred-
icate pri. In other words, it is the preference that a user
has on the predicate independently of contexts. However,
a daily analysis of the user behaviour can reveal that the
importance of the predicate pri on which ri was expressed
changes w.r.t contexts, leading to the definition of a contex-
tual importance sia.

Aggregate(ri, sia) = sia × ri (5)

These two numeric can be aggregated with different man-
ners, one possibility is given in equation 5 were ri is mul-
tiplied by the contextual score sia. In this way, more the
importance of the contextual score of a given pri is high,
more its related rating ri is preserved.

6. TOWARD A SERVICE-BASED CARS
Once contexts are learned and contextual profiles are con-

structed for each user in the RS, we show how runtime ser-
vices (Binding and Matching) can be deployed in CARS to
provide users with contextual recommendations. The next
sections present the CARS algorithm, and a simple example
scenario of its usage.

6.1 Contextual Top k neighbors
The key idea behind the CARS we propose is to base the

Top k neighbors detection only on the profile parts relevant
to a given context (i.e. operational profile) instead of on
whole user profile. Top k neighbors of the active user (ua)
are the k most similar users to him in term of their pro-
files. This means that profiles of all users are filtered and
adapted to the context of the active user before comparing
them. Algorithm 3 details the process of computing the Top
k contextual neighbors.

The algorithm is explained through the simple scenario
given bellow.

Algorithm 3 Contextual Top K Neighbors

Input: CPua = {m11, . . . ,mnm}: Contextual active user
profile, U : set of all users, ca: the active context, C: the
set of all contexts, Item: the item candidate to recom-
mendation, k: the number of neighbors to consider, γ:
the threshold.

Output: the TOP k neighbors
1: CN ← ∅ {Set of Candidate Neighbors}
2: c∗ := c ∈ C|∀ci ∈ C,MATCH(ci, ca) ≤
MATCH(c∗, ca)

3: OPu := BIND(CPu, c
∗)

4: for all CPui ∈ U do
5: if m < (Item, ∗), ∗, ∗ >∈ CPui then
6: OPui := BIND(CPui, ca)
7: CN ← CN ∪ {OPui}
8: TOPK ←

{
OPui ∈ CN, i = 1, k

}
such that ∀OPuj ∈

CN,OPuj /∈ TOPK,MATCH(OPuj , OPua) ≤
MATCH(OPui, OPua)

9: return TOPK

6.2 Aggregating Neighbor Ratings
Once Top k neighbors of the active user ua are deter-

mined, ratings they gave to the item (It) to be recommended
must be aggregated. The result of this aggregation allows
deciding whether it is relevant or not to recommend It to
the user ua. There exist several techniques for aggregating
these ratings [8, 6], the one we considered is the Weighted
Mean Aggregation (equation 6) where the contribution of
each neighbor rating is weighted with the similarity between
this neighbor and the active user ua.

Rate(u, It) = α
∑

ui∈TopK

Match(u, ui)×Rate(ui, It) (6)

α is normalizing factor.
According to the value of the aggregated rating, the RS

decides whether It could be or not recommended.

6.3 Simple scenario
The scenario below gives an intuition about the way CARS

provides users with contextual recommendations. Figure 4
focuses on the recommender engine (RE) sketched in figure
1. Dashed arrows represent the inputs of the RE.

When recommendations are requested, explicitly by users
(here John) or implicitly by the applications, RE computes
them following three processes A, B, and C shown in fig 4.

First of all, a parser extracts the active context (ca) of
the user, and designates the candidate content to recom-
mendation (step A1). In step B1, the active context (ca) is
matched with all context clusters in order to determine that
to which ca belongs (line 2 of the algorithm). This context
cluster is used in step B2 for binding John’s contextual pro-
file and producing his operational profile (line 3). At the
same time, RE looks for the candidate neighbors of John
(process C: lines 4-7). A candidate neighbor is a user who
rated the content to be recommended (filtering: step C1),
in a context cr similar to the active context ca (step C2).
In step C3, the contextual profile of each candidate user is
bound to its corresponding context cr, resulting in a set of
operational profiles. Step A2 synchronizes the two processes
B and C. It consists in determining the top k neighbors of
John among the candidate users. This is done by capturing
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Figure 4: Contextual CF-RS

the similarity between each candidate profile and John pro-
file; only top k similar profiles are retained (line 8). Step
A3 aggregates ratings given to the recommended content by
the top k returned neighbors. Finally, a decision is made
to know whether it is interesting or not to recommend the
candidate content (through a threshold for example).

7. RELATED WORK
Adomavicius et al. [4] discussed what a next generation of

RS might be and proposed some possible extensions that will
improve recommender capabilities such as the integration of
contextual information into recommendation processes. In
[3], a multidimensional approach is presented to incorporate
the context into recommendations. The approach is based
on ratings that are captured in OLAP cubes and which are
sensitive to contextual information such as Time, Place, and
Accompanying people. The same multidimensional cube-
based approach was proposed to manage contextual prefer-
ences in the database field [13]. Contextual preferences are
usually of the form: Pref(item, c1, . . . , cn) = w, where ci is
a contextual attribute, and the weight w ∈ [0, 1] expresses
the interest a user has on the item. Notice that Contextual
preferences were subject to extensive research in database
field [12, 5, 2]. Hence, understanding these researches can
help in designing more meaningful CARS. The difference
between these approaches and our is that, in the latter one,
contextual attributes are clustered to form a finite set of reg-
ular contexts of users (e.g. Lab context, Walking context)
while, in the former, each instance of contextual attribute is
considered itself as a context.

Inspired by human memory, Anand and Mobasher [6] pro-
posed a contextual recommendation where users are mod-
eled through a short-term memory (STM) which stores cur-
rent interactions and a long-term memory (LTM) which
stores previous interactions. Contextual Cues are generated
from STM to extract relevant ratings from LTM according
to the context (i.e. cues). These ratings are merged with
the STM to provide user with contextual recommendations.
The Binding service we presented has some similarities with
this approach in the manner it computes the operational
profile using both contextual profile (LTM) and active con-
text (Cue). However, unlike Anand et al. who consider the
interactional view of the context, we have considered the

representational view in which the context is an informa-
tion, stable, delineable, and separable from the activity [9].
More recently, there was attempts to define architectures for
context-aware recommender [7]. However, author don’t give
details about the deployment of such architectures.

8. CONCLUSION
In this paper, we have proposed a set of personalization

services that improve RS by introducing the notion of con-
text. Among these services, two of them (Context Discov-
ery and Contextualization) are design services and two oth-
ers (Binding and Matching) are recommendation services.
For each service, we have defined its operational semantics
through one or several algorithms. Finally, we have shown
how these services can be combined to form a CARS. Fur-
ther research on this topic will concentrate on the evaluation
of this approach by comparing traditional RS with CARS.
To this end, a significant benchmark has to be defined.
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ABSTRACT
In this position paper, we consider extending relational data-
base systems with a recommendation functionality. In par-
ticular, we propose that, along with the results of each query,
the user gets additional recommended results that we call
“You May Also Like” or Ymal results. We discuss a suite
of different approaches to computing Ymal results and ex-
ploit one that uses only the database content and the query
results. Some preliminary evaluation results are also pro-
vided.

1. INTRODUCTION
The typical interaction of a user with a database system is

by formulating queries. This interaction mode assumes that
users are to some extent familiar with the content of the
database and also have a clear understanding of their infor-
mation needs. However, as databases get larger and accessi-
ble to a more diverse and less technically-oriented audience,
a new “recommendation”-oriented form of interaction seems
attractive and useful.

In this paper, motivated by the way recommenders work,
we consider “recommending” to the users tuples not in the
results of their queries but of potential interest. For in-
stance, when asking for a Woody Allen movie, we could rec-
ommend a Woody Allen biography. When looking for drama
movies produced in England with Oscar nominations, we
could also recommend similar movies with BAFTA awards.
Further, we may recommend what similar users have asked
for in the past.

We call such results “You May Also Like” or Ymal results
for short. Ymal results are useful because they let users see
other tuples in the database that they may be unaware of.

We consider three fundamentally different approaches to
computing Ymal results. The first one, termed current-

state, uses the results of the current query and the database
content. The second one, termed history-based, is similar
to traditional recommendation systems. It uses the past
history of user queries to suggest tuples that are results of
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either similar past queries or results of queries posed by sim-
ilar users. The last one, termed external sources, considers
using information from resources external to the database,
such as the web.

We focus on the current-state approach and present a
novel method for computing Ymal results. The method ex-
plores both the database schema by expanding the original
query through joins with appropriate other relations and the
database content through value correlations. We also report
some preliminary evaluation results of this method.

Extending database queries with recommendations has
also been suggested in two very recent works, namely [12]
and [7]. FlexRecs [12] proposes a framework and a related
engine for the declarative specification of the recommenda-
tion process. Here, we address a specific recommendation
process, that of suggesting results relevant to a given user
query and propose methods for generating them. Recom-
mendations in [7] are more restricted than our Ymal results
in that they are solely based on the past behavior of similar
users. There is also some relation to query relaxation (e.g.
[11]). Query relaxation addresses a different problem: ex-
tending the original query when there are not enough match-
ing results.

The remainder of this paper is structured as follows. In
Section 2, we provide a taxonomy of methods for producing
Ymal results. In Section 3, we focus on a method that
uses the current database instance and query results, while
in Section 4, we present some preliminary results of this
method. Section 5 summarizes related work and Section 6
concludes the paper.

2. YMAL RESULTS
Assume a database system D and a set of users U inter-

acting with it by posing traditional select-project-join (SPJ)
queries. Given a user u ∈ U and a query q, a typical database
system returns a set of results R(q) in the form of tuples,
possibly produced by joining several relations of D. Besides
R(q), we would like to locate and recommend to u a set
of tuples that may also be of interest to the user. We call
this set of tuples “You May Also Like” tuples or Ymal re-
sults for short. We denote this set as Ymal(q, u). As a
running example, we shall use the movies database shown
in Figure 1.

In this paper, we propose a number of approaches to com-
pute Ymal results. These approaches fall into three main
categories:

1. Current-state approaches, that exploit the content and
schema of the current query result and database instance.



Figure 1: Movies database schema example.

2. History-based approaches, that exploit the history of pre-
viously submitted queries to the database system, e.g. by
using query logs.

3. External sources approaches, that exploit resources exter-
nal to the database, such as related published results and
reports, relevant web pages, thesaurus or ontologies.

Figure 2 depicts a taxonomy of Ymal computation tech-
niques. Next, we focus on each of these categories separately
and present challenges and strategies towards the computa-
tion of Ymal results.

Current-state Approaches: We assume first, that there
is no other information available other than a query q posed
by a user u and its result R(q). Then, Ymal results can be
computed based on either (i) local analysis of the intrinsic
properties of the result R(q) or (ii) global analysis of the
properties of the database D. In both cases, we can ex-
ploit (i) the content and/or (ii) the schema of R(q) or D

respectively.
There are many directions for computing Ymal results

along these axes. For instance, in the local analysis ap-
proach, after R(q) has been computed, we examine the con-
tent of its tuples to locate common information patterns ap-
pearing in many of them. We then employ such information
to retrieve and recommend tuples of the database that do
not belong in R(q) but exhibit similar behavior. For exam-
ple, assume that u poses a query to retrieve movie titles in
which Morgan Freeman stars. Since Morgan Freeman often
acts in detective roles, the relative attribute value detective

appears many times in the result. Therefore, we recommend
to u a number of movie titles in which other actors play the
role of detective. Another option, in a schema-based ap-
proach, is to expand the tuples of the result through joins.
Intuitively, in this way, we add extra, possibly useful infor-
mation to the result and search for common patterns in the
expanded result tuples. In our example, instead of present-
ing to u only the titles of Morgan Freeman’s movies, we may
enhance the result with information about the correspond-
ing genres. Based on the most frequent genres appearing in
these expanded tuples, we recommend to u other movies of
those genres.

In the global analysis case, we base Ymal computation
on properties of D. In the content approach, we rely on the
correlation of specific attribute values as well as their selec-
tivities. For example, when querying for Walter Matthau

movies, we may also recommend a number of Jack Lemmon

movies, since these two actors often star together. Correla-
tion among relations can be used to direct the expansion of
tuples in R(q) in a schema-based view of the problem.

Hybrid methods can also be applied by combining local
and global analysis or content and schema information when
processing a query result. Table 1 shows a taxonomy of the
current-state approaches. We will examine further details of
current-state approaches in Section 3.

History-based Approaches: History-based approaches
assume that there is available information about the pre-
vious interactions of the users with the database, similar to
traditional recommenders. In this respect, there are two al-
ternatives: one could either log the results of the queries
or the queries themselves. Technically, the two approaches
are not equivalent, since the result of each query depends
on the database instance, thus, the result of executing a
logged query in the current database instance may differ
significantly from the original result. Since logging results
imposes significant overheads, for simplicity, in this position
paper, we opt for logging queries.

Given a set of queries Q and a set of users U , the utility
function f : Q × U → N , where N is a totally ordered set,
measures the usefulness of a query q ∈ Q to a user u ∈ U .
We assume that the utility f(q, u) is equal to the number of
times user u has posed the query q.

Following the usual classification of recommendation sys-
tems, we distinguish between two different approaches: (i)
query-based Ymal results (similar to content-based recom-
mendations) and (ii) user-based Ymal results (similar to
collaborative recommendations).

In the query-based approach, when a user u poses a query
q, Ymal(q, u) includes results of the logged queries qi ∈ Q,
that are the most similar to q, according to some similarity
function simq(qi, qj) between queries. For example, we may
use:

simq(qi, qj) =
∣

∣

∣
R(qi)

⋂

R(qj)
∣

∣

∣
.

Using the utility function, we can represent each query q as a
vector (f(q, u1), f(q, u2), . . . f(q, u

|U|
)). Then, for example,

we can use as similarity, the inner product:

simq(qi, qj) =

|U|
∑

k=1

f(qi, uk)f(qj , uk)

In the user-based approach, when a user u poses a query q,
Ymal(q, u) includes results of queries posed by those users
uj ∈ U that exhibit the most similar behavior to u. Sim-
ilar users are located via a similarity function simu(ui, uj)
between users, such as:

simu(ui, uj) =
∣

∣

∣
Q(ui)

⋂

Q(uj)
∣

∣

∣

where Q(ui) is the set of queries posed by ui. Analogously to
the queries, using the utility function, we can represent each
user u as a vector (f(q1, u), f(q2, u), . . . f(q

|Q|
, u)). Then,

for example, we can use as similarity, the inner product:

simu(ui, uj) =

|Q|
∑

k=1

f(qk, ui)f(qk, uj)

In a hybrid approach, we present to u the results of the
most similar queries to q out of those that were posed by
similar users. Table 2 synopsizes history-based approaches.

Finally, we note that there is an important temporal di-
mension that needs to be considered. It is often the case that
recent queries reflect better the current trends and interests



Figure 2: A taxonomy of Ymal computation techniques.

Table 1: A taxonomy of current-state approaches.

Local analysis Global analysis Hybrid analysis

Content-based Most frequent values in R(q) Most correlated values in D Combine frequent and corre-
lated values

Schema-based Direct joins through frequencies
of values in expanded R(q)

Direct joins through correlations
among relations in D

Direct joins through frequencies
in expanded R(q) and correla-
tions among relations in D

of users, thus an aging scheme that gradually degrades the
importance of queries in the log is into place.

External Sources Approaches: Up to now, we have dis-
cuss how we can locate and recommend Ymal results by
exploiting intrinsic information of the database, such as cor-
relation among attribute values and relations themselves.
However, there are cases where relationships among data
items are not captured in the database, even if present.
Nowadays, a plethora of useful, well-organized information
is available over the Web in the form of articles, reports
and reviews in collectively maintained knowledge reposito-
ries, such as Wikipedia1 and LibraryThing2. Information
retrieved from such external sources can also be used for
the computation of Ymal results.

For example, assume the database schema of Figure 1
and a query about Sofia Coppola movies. Using external
information, we could recommend a number of Francis Ford

Coppola’s movies, since he is the father of Sofia Coppola, a
relationship that is not reflected in the schema. As another
example, consider that a user poses a query that retrieves
movies of various directors. Using an external source, inter-
esting information may be inferred, e.g. that most of these
directors are Asian. In this case, we could recommend other
movies by Asian directors. Note that, the origin of directors
cannot be found in the schema, so this correlation can be
found only through external sources.

3. CURRENT-STATE APPROACHES
Current-state approaches explore the results R(q) of an

SPJ query q to direct the computation of Ymal results for
a user u. In this section, we will further examine such ap-
proaches and their application. First, we will focus on local
analysis methods and then on global analysis ones.

1http://www.wikipedia.org
2http://www.librarything.com

Local Analysis: During local analysis of a query result
R(q), we aim at discovering interesting patterns that we will
later exploit to recommend Ymal results. Such patterns
can be either found in the tuples of R(q) (content-based
approach) or in the extended tuples produced by joining
the tuples of the result with other tuples of the database
(schema-based approach).

In this work, we view interesting patterns as frequently
appearing attribute values, or combinations thereof. To
quantify attribute values appearances in R(q), we define the
value-frequencies matrix M

R(q). There is one row in M
R(q)

for each attribute A1, . . . , Am of R(q) and one column for
each distinct attribute value v1, . . . , vn appearing in its tu-
ples. M

R(q)(i, j) contains the number of occurrences of vj

for Ai in R(q). As an example, consider a user that is in-
terested in movie titles staring Lee Phelps. In Figure 3, we
see a part of the related value-frequencies matrix. For ease
of presentation, we depict only the five most frequent values
for the attribute Role.

Policeman Detective Cop Bartender Guard

Role 36 24 23 22 13

Figure 3: Value-frequencies matrix example.

Given a query q and the corresponding value-frequencies
matrix M

R(q), our goal is to present to the user a set of
Ymal results with cardinality p. Such results are computed
with regards to the most frequent attribute values in R(q) as
specified by M

R(q). In particular, we locate the k elements
in M

R(q) with the highest values and, for each such element,
we construct an appropriate SPJ query to retrieve interest-
ing results. For clarity in notation, we also consider the ma-
trix M ′

R(q) for which M ′

R(q)(i, j) = M
R(q)(i, j) if M

R(q)(i, j)
belongs to the k, k > 0, most frequent attribute values and
M ′

R(q)(i, j) = 0 otherwise. Each element contributes a num-



Table 2: A taxonomy of history-based approaches.

Query-based approaches User-based approaches Hybrid approaches

Similarities among queries Similarities among users Similarities among both users and queries

ber of Ymal results based on the function F :

F (i, j) =
M ′

R(q)(i, j)
∑

i

∑

j M ′

R(q)(i, j)
· p

For the above example, let p = 10 and k = 2. Then, based
on F , we will recommend six movies containing the role
Policeman and four ones containing the role Detective.

When a schema-based approach is followed, we expand
R(q) prior to constructing M , so that, additional interest-
ing common patterns can be discovered. In our example, if
we expand R(q) towards the GENRE relation, we discover
other interesting information, such as, this actor mainly
stars in Drama movies. For a specific query q and its re-
sult R(q), we expand R(q) towards all possible directions
through the same number of join operations and construct
the corresponding value-frequency matrices. Then, we select
the matrix containing the most frequent value appearances
and proceed with the Ymal computation as before, based
on this matrix alone. We consider that patterns discovered
after one join operation are more relevant than patterns dis-
covered after two join operations and so on. For this reason,
when selecting which matrix to use, we also take into ac-
count the corresponding number of needed join operations
for each matrix and favor matrices with fewer joins.

Global Analysis: Global analysis aims at taking advan-
tage of database properties during the recommendation of
Ymal results. In this work, we consider that Ymal com-
putation is guided by certain statistics maintained for our
database D. Such statistics include the correlation among
the various attribute values of the database and the corre-
lation among the various relations in D.

We define the value-correlation matrix V that captures
the correlation between pairs of distinct attribute values in
each database relation. V is a (x × y × y) matrix, where
x is the number of attributes in D and y is the number
of distinct attribute values. Given a query q, we consult
the matrix V to locate attribute values correlated to the
selection predicates of q. We select the k attribute values
that are the most correlated to q. The more correlated such
a value is, the more Ymal results it will contribute. This
can be calibrated via the use of a function similar to F that
is defined based on V instead of M .

The correlation among the relations of D can be used to
direct the joining operations in a schema-based approach.
Such correlations are captured in the (z × z) relation-corre-

lation matrix A, where z is the number of relations in D.
For example, assuming that the relation CAST is strongly
correlated with the relation ACTOR, then, when querying
for specific actor names we could present roles that these
actors have portrayed.

Hybrid Analysis: Each of the methods described above
exploits different properties: local analysis is based on the
actual results of a query, while global analysis depends on

Table 3: Relation cardinalities.

Relation name Cardinality

GENRE 109.261

MOVIE 70.266

CAST 1.266.462

ACTOR 322.467

DIRECT 109.226

DIRECTOR 152.533

the whole database. As a next step, we can combine the
advantages of both approaches in a hybrid method that ex-
ploits both local and global properties. A hybrid content-
based approach is to use attribute values that are both fre-
quent and strongly correlated. To calibrate the importance
of each factor, we rely on a weighted function. Similarly,
in a schema-based approach, the joining of R(q) with other
database relations is directed using both the correlations
among the relations of the database, as well as, frequent
appearances of attribute values in those relations.

4. EVALUATION
Our evaluation objective is to demonstrate the effective-

ness of our approach for current-state methods. In particu-
lar, to show the usefulness of Ymal results, we will present
for representative queries both their R(q) and Ymal(q, u)
results. For our experiments, we use a real movie dataset
[1]. The schema of the database is depicted in Figure 1,
while Table 3 shows the cardinalities of the relations.

Local analysis: To experiment with local analysis Ymal

computation, we use the following query:

q1 : select *

from MOVIE, CAST, ACTOR

where MOVIE.m-id = CAST.m-id and

CAST.a-id = ACTOR.a-id and

ACTOR.f name = ’Lee’ and

ACTOR.l name = ’Phelps’;

A subset of R(q1) is shown in Figure 4. The part (372839 -

Lee - Phelps - M ) is common in all tuples of R(q1) due
to the query selection conditions, therefore, we exclude its
attribute values from the construction of M

R(q1). For k = 2,
the two most common values in the 394 tuples of R(q1) are
the values Policeman and Detective of the attribute Role

(Figure 3). For p = 3, Policeman and Detective contribute
two and one Ymal results respectively, when the content-
based approach is followed (Figure 4).



R(q1) results

m-id title year rank a-id m-id role a-id f name l name gender

4619 Abbott and Costello in Hollywood 1945 5.6 372839 4619 Detective 372839 Lee Phelps M

218015 Money to Loan 1939 6.3 372839 218015 Policeman 372839 Lee Phelps M

46730 Bride Came C.O.D., The 1941 6.8 372839 46730 Policeman 372839 Lee Phelps M

330384 Thin Man Goes Home, The 1945 7 372839 330384 Policeman 372839 Lee Phelps M

31821 Beast From 20,000 Fathoms, The 1953 6.3 372839 31821 Cop 372839 Lee Phelps M
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Ymal(q1, u) results: Content-based Approach

m-id title year rank a-id m-id role a-id f name l name gender

323813 Talented Mr. Ripley, The 1999 7 411152 323813 Policeman 411152 Manuel Ruffini M

195807 Love Letter 1998 8.2 420874 195807 Policeman 420874 Bsaku Satoh M

155070 I, Robot 2004 6.9 297823 155070 Detective 297823 Craig March M

Figure 4: Content-based local analysis for q1.

When the schema-based approach is employed, the possi-
ble directions for expansion are the relations GENRE and
DIRECT. The most common patterns are observed when
R(q1) is expanded towards the GENRE relation and are the
values Drama and Comedy that appear 216 and 120 times
respectively. The expanded tuples of R(q1) and the recom-
mended Ymal results in this case, for k = 2 and p = 3, are
the ones shown in Figure 5.

Global analysis: To experiment with content-based, global
analysis Ymal computation, we use the following query that
retrieves romance movies:

q2 : select *

from MOVIE, GENRE

where MOVIE.m-id = GENRE.m-id and

GENRE.genre = ’Romance’;

In our dataset, the attribute value Romance appears along
with other genres for the same movies as many times as
shown below:

Drama (2801) Comedy (2398) Musical (538)
Action (351) Adventure (323) Thriller (267)
Fantasy (263) Crime (263) Family (234)
War (199) Short (162) Mystery (131)

We use again k = 2 and p = 3. As we can see above, the
two mostly correlated values to Romance are Drama and
Comedy. Therefore, two drama movies and a comedy one
will be recommended. We omit the relative figure due to
space limitations.

Consider now the query:

q3 : select *

from MOVIE, DIRECT, DIRECTOR

where MOVIE.m-id = DIRECT.m-id and

DIRECT.d-id = DIRECTOR.d-id and

DIRECTOR.f name = ’Steven’ and

DIRECTOR.l name = ’Spielberg’;

In our database, the relation that is most correlated to
MOVIE is GENRE. Therefore, when computing Ymal re-
sults using the schema-based approach, we enhance R(q3)
with information about the genres of Steven Spielberg’s movies.

5. RELATED WORK
In this paper, we have proposed extending relational data-

base systems with recommendation functionality in the form
of Ymal results. In general, recommendation methods are
categorized into: (i) content-based, that recommend items
similar to those the user has preferred in the past (e.g. [16,
14]), (ii) collaborative, that recommend items that similar
users have liked in the past (e.g. [10, 6]) and (iii) hybrid,
that combine content-based and collaborative ones (e.g. [4,
5]). [3] provides a comprehensive survey of the current gen-
eration of recommendation systems. Several extensions have
also been proposed, such as employing multi-criteria ratings
[2] and extending the typical recommendation systems be-
yond the two dimensions of users and items to include fur-
ther contextual information [15].

In terms of relating recommendations and databases, there
are two very recent works [12, 7]. [12] provides a general
framework and an engine for the declarative specification of
the recommendation process over structured data. In this
paper, we focus on the specific recommendation process of
computing Ymal results related to a specific user query.
The recommendation process in [12] is specified through a
series of interconnected operators, which apart from the tra-
ditional relational operators, includes also a number of spe-
cific to the recommendation process operators, such as the
recommend operator, that recommends a set of tuples of
a specific relation with regards to their relationship with
the tuples of another relation. In our approach, we rely on
typical relational algebra operators. In [7], the focus is on
recommending SQL queries to the users of a database. The
proposed method is based on “session summaries”, i.e. the
set of tuples that contributed to some result for queries im-
posed by the user in the current session. Given a session
summary for a user u, the purpose is to compute a predic-
tion summary of tuples that may be of interest to the user
and then locate a number of queries able to retrieve the tu-
ples in it. The prediction summary is computed based on
the session summary of u and other users similar to u. The
suggested queries are retrieved from a pool of past queries
submitted by the users. Recommendations in [7] are more
restricted than our Ymal results, since they are solely based
on the past behavior of similar users.

There is also some relation with query reformulation, where
a query is relaxed or restricted when the number of results of
the original query are too few or too many respectively, and



Expanded R(q1) results

m-id title year rank a-id m-id role a-id f name l name gender m-id genre

4619 Abbott and Costello in Hollywood 1945 5.6 372839 4619 Detective 372839 Lee Phelps M 4619 Comedy

218015 Money to Loan 1939 6.3 372839 218015 Policeman 372839 Lee Phelps M 218015 Drama

46730 Bride Came C.O.D., The 1941 6.8 372839 46730 Policeman 372839 Lee Phelps M 46730 Comedy

330384 Thin Man Goes Home, The 1945 7 372839 330384 Policeman 372839 Lee Phelps M 330384 Drama

31821 Beast From 20,000 Fathoms, The 1953 6.3 372839 31821 Cop 372839 Lee Phelps M 31821 Sci-Fi
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Ymal(q1, u) results: Schema-based Approach

256348 Pinocchio 2002 4 36868 256348 Pinocchio 36868 Roberto Benigni M 256348 Comedy

34306 Berlin Berlin 1998 9.7 426546 34306 Sammy 426546 Asad Schwarz M 34306 Drama

218345 Monster 200 7.4 91661 218345 Newscaster 91661 Jim R. Coleman M 218345 Drama

Figure 5: Schema-based local analysis for q1.

with automatic result ranking, where the results of a query
are restricted to the top-ranked ones, when the number of
results of the original query is very large. Such approaches
usually use the frequency of values of specific attributes in
the database to restrict or expand the result set, which is
also the basic idea of our current-state approaches in com-
puting Ymal results.

A framework for relaxing queries involving numerical con-
ditions in selection and join predicates is proposed in [11],
while the relaxation algorithm proposed in [9] produces a
relaxed query for a given query range and a desired cardi-
nality of the result set. To estimate the result size, the al-
gorithm uses multi-dimensional histograms. [13] studies the
problem of query refinement through transformations of the
selection query predicates. Transformations aim at either
relaxing the query predicates in order to increase the result
cardinality or contracting the query predicates in order to
decrease the result cardinality. A systematic approach for
the automatic ranking of query results is proposed in [8].
To estimate the rank of a result tuple, they use both work-
load and data analysis; this is similar to the history-based

and current-state approaches respectively. The main differ-
ence is that we consider recommending tuples not in the
result set, whereas [8] consider ranking the tuples in the re-
sult set. The operator frequent co-occurring term [17] can
also be used to direct query refinement in relational keyword
search. Given a keyword query q, this operator returns a set
of terms that appear frequently in the result of q and none
of them is contained in q. These are the terms that can be
employed by users to refine their queries.

6. CONCLUSIONS
In this paper, we presented a first approach to comput-

ing Ymal results and organized the various alternatives into
categories. There is a number of open issues for research.
In terms of current-state Ymal computation, we could ex-
ploit information about the importance of each relation at-
tribute. For history-based Ymal computation, we could
explore techniques based on the logging of query results
or statistics about query results instead of logging queries.
Also, in this work, we looked into selecting Ymal results
based on similarity. We could also consider other criteria,
such as presenting to the users novel, fresh or diverse infor-
mation [18].
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